- 07 11月, 2018 1 次提交
-
-
由 peizhilin 提交于
-
- 06 11月, 2018 2 次提交
- 05 11月, 2018 2 次提交
- 01 11月, 2018 15 次提交
-
-
由 Wu Yi 提交于
-
由 Qiao Longfei 提交于
set en empty optimize block if pserver has no optimize block
-
由 Qiao Longfei 提交于
Dist table support multi table
-
由 chengduo 提交于
* fix GetTensorFromVar test=release/1.1 * refine GetTensorFromVar test=develop
-
由 Qiao Longfei 提交于
test=develop
-
由 Xin Pan 提交于
update doc to 1.1
-
由 Xin Pan 提交于
-
由 Qiao Longfei 提交于
-
由 Qiao Longfei 提交于
-
由 Yan Xu 提交于
add fused broadcast op unit test
-
由 Qiao Longfei 提交于
test=develop
-
由 Yu Yang 提交于
It seems that the blocking queue might be destroyed early than Run method complete. It might because the Run method throw some unhandled exception. However, it should be shared_ptr when multthread access an resource. So change BlockingQueue as a shared_ptr. test=develop
-
由 Xin Pan 提交于
fix sequence_pad example error
-
由 Wu Yi 提交于
* fix use_reader_alloc uts * dist ut fixes test=develop * update test=develop * fix test for py3 test=develop
-
由 Yan Chunwei 提交于
-
- 31 10月, 2018 20 次提交
-
-
由 chengduo 提交于
test=develop
-
由 Yan Chunwei 提交于
remove the optimized but buggy implementation
-
由 chengduo 提交于
test=develop
-
由 Zeng Jinle 提交于
Fix dynamic_gru h_0 bug
-
由 Qiyang Min 提交于
Fix Mac Python3 CI job
-
由 Tao Luo 提交于
Max Sequence pool optimization
-
由 Qiao Longfei 提交于
-
由 Qiao Longfei 提交于
-
由 Qiao Longfei 提交于
-
由 Xin Pan 提交于
remove with_inference option
-
由 minqiyang 提交于
test=develop
-
由 minqiyang 提交于
test=develop
-
https://github.com/PaddlePaddle/Paddle由 Qiao Longfei 提交于
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix-pserver-crash-when-no-parameter
-
由 Yu Yang 提交于
* feat(platform): lazy initialization of devicecontext in pool Use std::async(deferer, []{...}) to lazy initialize DeviceContext in Pool test=develop * Add future includes test=develop
-
由 minqiyang 提交于
test=develop
-
由 minqiyang 提交于
test=develop
-
由 Xin Pan 提交于
increase test timeout coverage.
-
由 Qiao Longfei 提交于
-
由 Xin Pan 提交于
-
由 Xin Pan 提交于
1.add position encoding 2.logloss in nn.py
-