Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7825ae9c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7825ae9c
编写于
11月 01, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
11月 01, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14190 from jacquesqiao/dist-table-support-multi-table
Dist table support multi table
上级
2ccf77d1
f3bbd3b4
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
80 addition
and
47 deletion
+80
-47
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+74
-46
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+6
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
7825ae9c
...
...
@@ -411,12 +411,12 @@ class TestDistLookupTableBase(TranspilerTest):
self
.
emb_size
=
64
self
.
lookup_table_name
=
'shared_w'
def
emb_pool
(
ids
):
def
emb_pool
(
ids
,
table_name
,
is_distributed
):
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
size
=
[
self
.
table_size
,
self
.
emb_size
],
dtype
=
'float32'
,
param_attr
=
self
.
lookup_table_name
,
# share parameter
param_attr
=
table_name
,
is_sparse
=
is_sparse
,
is_distributed
=
is_distributed
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
...
...
@@ -426,9 +426,13 @@ class TestDistLookupTableBase(TranspilerTest):
name
=
'title_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
brand_ids
=
fluid
.
layers
.
data
(
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
title_emb
=
emb_pool
(
title_ids
)
brand_emb
=
emb_pool
(
brand_ids
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
],
axis
=
1
)
profile_ids
=
fluid
.
layers
.
data
(
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
title_emb
=
emb_pool
(
title_ids
,
self
.
lookup_table_name
,
is_distributed
)
brand_emb
=
emb_pool
(
brand_ids
,
self
.
lookup_table_name
,
is_distributed
)
profile_emb
=
emb_pool
(
profile_ids
,
"profile_emb"
,
False
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
,
profile_emb
],
axis
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
fc0
,
size
=
2
,
act
=
None
,
...
...
@@ -449,7 +453,7 @@ class TestLocalLookupTable(TestDistLookupTableBase):
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
3
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
4
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
...
...
@@ -459,16 +463,23 @@ class TestLocalLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table 2 adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
trainer
,
_
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
@@ -480,39 +491,45 @@ class TestDistLookupTable(TestDistLookupTableBase):
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
5
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
#
2 optimize for table sgd
#
4 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sum"
,
"sgd"
])
# 3 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
#
4
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"save"
])
#
5
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
,
trainer_startup
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
startup_ops
=
[
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'fake_init'
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'uniform_random'
,
'uniform_random'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'fake_init'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer_startup
.
blocks
[
0
].
ops
],
startup_ops
)
...
...
@@ -526,7 +543,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
config
=
fluid
.
DistributeTranspilerConfig
()
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
3
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
4
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
...
...
@@ -535,17 +552,23 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
@@ -559,29 +582,34 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
,
False
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
5
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sgd"
])
# 3 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
# 2 optimize for table adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"adam"
,
"scale"
,
"scale"
])
# 3 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"sgd"
])
# 4 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
#
4
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"save"
])
#
5
save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
,
_
=
self
.
get_trainer
(
config
)
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'recv'
,
'recv'
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
7825ae9c
...
...
@@ -1065,7 +1065,12 @@ to transpile() call.")
continue_search_lookup_table_op
=
False
all_ops
=
program
.
global_block
().
ops
for
op
in
all_ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
and
self
.
table_name
==
op
.
input
(
"W"
)[
0
]:
if
not
op
.
attr
(
'is_distributed'
):
raise
RuntimeError
(
"lookup_table_op that lookup an distributed embedding table"
"should set is_distributed to true"
)
continue_search_lookup_table_op
=
True
lookup_table_op_index
=
lookup_table_op_index
if
lookup_table_op_index
!=
-
1
else
list
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录