Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fba3712a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fba3712a
编写于
12月 20, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi-input to forward function in Layer
上级
3cd10a7c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
75 addition
and
74 deletion
+75
-74
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+4
-13
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+71
-61
未找到文件。
python/paddle/fluid/imperative/layers.py
浏览文件 @
fba3712a
...
@@ -29,18 +29,9 @@ class PyLayer(core.Layer):
...
@@ -29,18 +29,9 @@ class PyLayer(core.Layer):
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
**
kwargs
)
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
**
kwargs
)
self
.
_dtype
=
kwargs
.
get
(
"dtype"
,
core
.
VarDesc
.
VarType
.
FP32
)
self
.
_dtype
=
kwargs
.
get
(
"dtype"
,
core
.
VarDesc
.
VarType
.
FP32
)
def
__call__
(
self
,
inputs
):
def
__call__
(
self
,
*
inputs
):
if
not
isinstance
(
inputs
,
list
)
and
not
isinstance
(
inputs
,
tuple
):
outputs
=
self
.
forward
(
*
inputs
)
inputs
=
[
inputs
]
var_inputs
=
[]
for
x
in
inputs
:
py_var
=
base
.
to_variable
(
x
)
var_inputs
.
append
(
py_var
)
outputs
=
self
.
forward
(
var_inputs
)
return
outputs
return
outputs
def
forward
(
self
,
inputs
):
def
forward
(
self
,
*
inputs
):
r
eturn
[]
r
aise
NotImplementedError
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
fba3712a
...
@@ -18,81 +18,91 @@ import numpy as np
...
@@ -18,81 +18,91 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.imperative.nn
import
Conv2D
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
()
# groups = 1
# dilation = [1, 1]
# pad = [0, 0]
# stride = [1, 1]
# input_size = [2, 3, 5, 5] # NCHW
# assert np.mod(input_size[1], groups) == 0
# f_c = input_size[1] // groups
# filter_size = [6, f_c, 3, 3]
self
.
_conv2d
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
@
contextlib
.
contextmanager
def
forward
(
self
,
inputs
):
def
new_program_scope
():
x
=
self
.
_conv2d
(
inputs
)
prog
=
fluid
.
Program
()
x
=
self
.
_pool2d
(
x
)
startup_prog
=
fluid
.
Program
()
return
x
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
class
MNIST
(
fluid
.
imperative
.
PyLayer
):
class
MNIST
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MNIST
,
self
).
__init__
()
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
groups
=
1
dilation
=
[
1
,
1
]
pad
=
[
0
,
0
]
stride
=
[
1
,
1
]
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
input_size
[
1
],
groups
)
==
0
f_c
=
input_size
[
1
]
//
groups
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
_
conv2d
=
Conv2D
(
self
.
_
simple_img_conv_pool_1
=
SimpleImgConvPool
(
num_channels
=
3
,
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
20
,
num_filters
=
20
,
filter_size
=
3
,
pool_size
=
2
,
stride
=
stride
,
pool_stride
=
2
,
padding
=
pad
,
act
=
"relu"
)
dilation
=
dilation
,
groups
=
groups
,
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
use_cudnn
=
False
)
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
return
x
return
x
class
TestImperativeMnist
(
unittest
.
TestCase
):
class
TestImperativeMnist
(
unittest
.
TestCase
):
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.PyLayer()
# l.forward([])
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# l = MyLayer()
# x = l(np_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[3], append_batch_size=False)
# l = MyLayer()
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(
# x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
def
test_mnist_cpu_float32
(
self
):
def
test_mnist_cpu_float32
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
mnist
=
MNIST
()
mnist
=
MNIST
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录