diff --git a/python/paddle/fluid/imperative/layers.py b/python/paddle/fluid/imperative/layers.py index 305e0836449c0d2938ff8119bf6a762dccb81ae5..5ebc0430ccc390b302487727dba1f4dac5abbd99 100644 --- a/python/paddle/fluid/imperative/layers.py +++ b/python/paddle/fluid/imperative/layers.py @@ -29,18 +29,9 @@ class PyLayer(core.Layer): self._helper = LayerHelper(type(self).__name__, **kwargs) self._dtype = kwargs.get("dtype", core.VarDesc.VarType.FP32) - def __call__(self, inputs): - if not isinstance(inputs, list) and not isinstance(inputs, tuple): - inputs = [inputs] - - var_inputs = [] - for x in inputs: - py_var = base.to_variable(x) - var_inputs.append(py_var) - - outputs = self.forward(var_inputs) - + def __call__(self, *inputs): + outputs = self.forward(*inputs) return outputs - def forward(self, inputs): - return [] + def forward(self, *inputs): + raise NotImplementedError diff --git a/python/paddle/fluid/tests/unittests/test_imperative_mnist.py b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py index 999d5d145086617b83f21f3566229728bbca3774..981e9eb2d621049b67aed242037a82810a683c78 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_mnist.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_mnist.py @@ -18,81 +18,91 @@ import numpy as np import paddle.fluid as fluid from paddle.fluid import core -from paddle.fluid.imperative.nn import Conv2D +from paddle.fluid.imperative.nn import Conv2D, Pool2D + + +class SimpleImgConvPool(fluid.imperative.PyLayer): + def __init__(self, + num_channels, + num_filters, + filter_size, + pool_size, + pool_stride, + pool_padding=0, + pool_type='max', + global_pooling=False, + conv_stride=1, + conv_padding=0, + conv_dilation=1, + conv_groups=1, + act=None, + use_cudnn=False, + param_attr=None, + bias_attr=None): + super(SimpleImgConvPool, self).__init__() + + # groups = 1 + # dilation = [1, 1] + # pad = [0, 0] + # stride = [1, 1] + # input_size = [2, 3, 5, 5] # NCHW + # assert np.mod(input_size[1], groups) == 0 + # f_c = input_size[1] // groups + # filter_size = [6, f_c, 3, 3] + self._conv2d = Conv2D( + num_channels=num_channels, + num_filters=num_filters, + filter_size=filter_size, + stride=conv_stride, + padding=conv_padding, + dilation=conv_dilation, + groups=conv_groups, + param_attr=None, + bias_attr=None, + use_cudnn=use_cudnn) + + self._pool2d = Pool2D( + pool_size=pool_size, + pool_type=pool_type, + pool_stride=pool_stride, + pool_padding=pool_padding, + global_pooling=global_pooling, + use_cudnn=use_cudnn) -@contextlib.contextmanager -def new_program_scope(): - prog = fluid.Program() - startup_prog = fluid.Program() - scope = fluid.core.Scope() - with fluid.scope_guard(scope): - with fluid.program_guard(prog, startup_prog): - yield + def forward(self, inputs): + x = self._conv2d(inputs) + x = self._pool2d(x) + return x class MNIST(fluid.imperative.PyLayer): - def __init__(self): - super(MNIST, self).__init__() - - groups = 1 - dilation = [1, 1] - pad = [0, 0] - stride = [1, 1] - input_size = [2, 3, 5, 5] # NCHW - assert np.mod(input_size[1], groups) == 0 - f_c = input_size[1] // groups - filter_size = [6, f_c, 3, 3] + def __init__(self, param_attr=None, bias_attr=None): + super(MNIST, self).__init__(param_attr=param_attr, bias_attr=bias_attr) - self._conv2d = Conv2D( + self._simple_img_conv_pool_1 = SimpleImgConvPool( num_channels=3, + filter_size=5, num_filters=20, - filter_size=3, - stride=stride, - padding=pad, - dilation=dilation, - groups=groups, - use_cudnn=False) + pool_size=2, + pool_stride=2, + act="relu") + + self._simple_img_conv_pool_2 = SimpleImgConvPool( + num_channels=3, + filter_size=5, + num_filters=50, + pool_size=2, + pool_stride=2, + act="relu") def forward(self, inputs): - x = self._conv2d(inputs) + x = self._simple_img_conv_pool_1(inputs) + x = self._simple_img_conv_pool_2(x) return x class TestImperativeMnist(unittest.TestCase): - # def test_layer(self): - # with fluid.imperative.guard(): - # cl = core.Layer() - # cl.forward([]) - # l = fluid.imperative.PyLayer() - # l.forward([]) - - # def test_layer_in_out(self): - # np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) - # with fluid.imperative.guard(): - # l = MyLayer() - # x = l(np_inp)[0] - # self.assertIsNotNone(x) - # dy_out = x._numpy() - # x._backward() - # dy_grad = l._x_for_debug._gradient() - - # with new_program_scope(): - # inp = fluid.layers.data( - # name="inp", shape=[3], append_batch_size=False) - # l = MyLayer() - # x = l(inp)[0] - # param_grads = fluid.backward.append_backward( - # x, parameter_list=[l._x_for_debug.name])[0] - # exe = fluid.Executor(fluid.CPUPlace()) - - # static_out, static_grad = exe.run( - # feed={inp.name: np_inp}, - # fetch_list=[x.name, param_grads[1].name]) - - # self.assertTrue(np.allclose(dy_out, static_out)) - # self.assertTrue(np.allclose(dy_grad, static_grad)) - def test_mnist_cpu_float32(self): with fluid.imperative.guard(): mnist = MNIST()