Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fb9c08f0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fb9c08f0
编写于
12月 25, 2017
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make forward work
上级
28630dd8
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
285 addition
and
223 deletion
+285
-223
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+1
-1
paddle/operators/hierarchical_sigmoid_op.cc
paddle/operators/hierarchical_sigmoid_op.cc
+40
-10
paddle/operators/hierarchical_sigmoid_op.h
paddle/operators/hierarchical_sigmoid_op.h
+52
-43
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+1
-1
paddle/operators/math/math_function.cc
paddle/operators/math/math_function.cc
+6
-6
paddle/operators/math/math_function.h
paddle/operators/math/math_function.h
+3
-3
paddle/operators/math/math_function_impl.h
paddle/operators/math/math_function_impl.h
+8
-8
paddle/operators/math/matrix_bit_code.cc
paddle/operators/math/matrix_bit_code.cc
+116
-95
paddle/operators/math/matrix_bit_code.h
paddle/operators/math/matrix_bit_code.h
+40
-46
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+2
-0
python/paddle/v2/fluid/tests/op_test.py
python/paddle/v2/fluid/tests/op_test.py
+6
-5
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
+10
-5
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
fb9c08f0
...
...
@@ -207,7 +207,7 @@ set(DEPS_OPS
gru_op
adagrad_op
sgd_op
hierarchical_sigmoid_op
)
hierarchical_sigmoid_op
save_op
load_op
send_op
...
...
paddle/operators/hierarchical_sigmoid_op.cc
浏览文件 @
fb9c08f0
...
...
@@ -60,19 +60,48 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
h
asInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
H
asInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Parameters"
),
"Input(Parameters)"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
num_classes_
-
1
});
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
HierarchicalSigmoidGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Parameters"
),
"Input(Parameters)"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label)"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Parameters"
)),
"Input(Parameters@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
HierarchicalSigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -98,7 +127,8 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
"the shape is [N, 1]"
);
AddAttr
<
int
>
(
"num_classes"
,
"(int, required)"
,
"The number of classes"
);
AddAttr
<
int
>
(
"num_classes"
,
"(int, required)"
,
"The number of classes"
)
.
SetDefault
(
2
);
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
At each node, a sigmoid function is used to caculate the probability of
...
...
@@ -116,9 +146,9 @@ namespace ops = paddle::operators;
REGISTER_OP
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
,
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/operators/hierarchical_sigmoid_op.h
浏览文件 @
fb9c08f0
...
...
@@ -14,8 +14,10 @@ limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/clip_op.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/matrix_bit_code.h"
#include "paddle/platform/transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -23,60 +25,64 @@ namespace operators {
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
platform
::
Transform
;
template
<
typename
Place
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Parameter
"
);
auto
*
param
s
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Parameters
"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
framework
::
Tensor
sum
;
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
auto
*
ids
=
label
->
data
<
int64_t
>
();
framework
::
Tensor
pre_out
;
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
&
device_ctx
=
ctx
.
device_context
();
math
::
ColwiseSum
<
Place
,
T
>
col_sum
;
math
::
RowwiseSum
<
Place
,
T
>
row_sum
;
framework
::
Tensor
sum
;
auto
pre_out_data
=
pre_out
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
int64_t
batch_size
=
ins
[
0
]
->
dims
()[
0
];
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
std
::
vector
<
int64_t
>
pre_out_dims
({
batch_size
,
code_length
});
pre_out
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
pre_out_dims
),
ctx
.
GetPlace
());
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
auto
sum_mat
=
EigenMatrix
<
T
>::
From
(
sum
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
math
::
AddByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
bias
);
bit_code
.
Add
(
num_classes
,
ids
,
pre_out
,
*
bias
);
}
for
(
size_t
i
=
0
;
i
<
in
.
dims
()[
0
];
++
i
)
{
math
::
MulByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
->
Slice
(
i
,
i
+
1
),
*
in
->
Slice
(
i
,
i
+
1
));
for
(
int
i
=
0
;
i
<
in
->
dims
()[
0
];
++
i
)
{
bit_code
.
Mul
(
num_classes
,
ids
,
pre_out
,
params
->
Slice
(
i
,
i
+
1
),
in
->
Slice
(
i
,
i
+
1
));
}
// clip the matrix with (-40, 40)
pre_out_mat
.
device
(
place
)
=
pre_out_mat
.
abs
().
cwiseMax
(
static_cast
<
T
>
(
40.0
));
math
::
SumByBitCode
<
T
>
(
num_classes
,
*
label
,
*
out
,
pre_out
,
static_cast
<
T
>
(
-
1
));
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)
));
bit_code
.
Sum
(
num_classes
,
ids
,
pre_out
,
*
out
,
static_cast
<
T
>
(
-
1
));
// softrelu with threshold is 40.0
pre_out_mat
.
device
(
place
)
=
pre_out_mat
.
abs
().
cwiseMax
(
static_cast
<
T
>
(
40.0
));
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
device_ctx
,
pre_out
,
&
sum
);
col_sum
(
device_ctx
,
*
out
,
&
sum
)
;
out_mat
.
device
(
place
)
=
sum_mat
+
out_mat
;
}
};
template
<
typename
Place
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -85,37 +91,40 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
*
params
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Parameters"
));
auto
*
bias
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Label"
));
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
framework
::
Tensor
pre_out
;
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
&
dev_ctx
=
ctx
.
device_context
(
);
int64_t
batch_size
=
in_grad
.
dims
()[
0
]
;
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
pre_out
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
()
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
()
;
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>(
);
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
auto
*
ids
=
label
->
data
<
int64_t
>
();
// init pre_out matrix with {1.0}
std
::
vector
<
int64_t
>
pre_out_dims
({
batch_size
,
code_length
});
pre_out
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
pre_out_dims
),
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set
;
set
(
dev_ctx
,
&
pre_out
,
static_cast
<
T
>
(
1.0
));
math
::
SetConstant
<
DeviceContext
,
T
>
one
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
one
(
device_ctx
,
&
pre_out
,
static_cast
<
T
>
(
1.0
));
// softrelu derivative
pre_out_mat
.
device
(
place
)
=
pre_out_mat
*
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
);
math
::
SubByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
);
bit_code
.
Sub
(
num_classes
,
ids
,
pre_out
);
if
(
bias
)
{
math
::
AddByBitCodeGrad
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
bias
);
bit_code
.
AddGrad
(
num_classes
,
ids
,
pre_out
,
*
bias
);
}
for
(
size_t
i
=
0
;
i
<
in_grad
.
dims
()[
0
];
++
i
)
{
math
::
MulByBitCodeGradWeight
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
[
i
],
*
in
[
i
]
->
Slice
(
i
,
i
+
1
));
math
::
MulByBitCodeGradError
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
[
i
],
*
ins_grad
[
i
]
->
Slice
(
i
,
i
+
1
));
for
(
int
i
=
0
;
i
<
in_grad
->
dims
()[
0
];
++
i
)
{
auto
p_sliced
=
params
->
Slice
(
i
,
i
+
1
);
auto
in_sliced
=
in
->
Slice
(
i
,
i
+
1
);
auto
in_grad_sliced
=
in_grad
->
Slice
(
i
,
i
+
1
);
bit_code
.
MulGradWeight
(
num_classes
,
ids
,
pre_out
,
p_sliced
,
in_sliced
);
bit_code
.
MulGradError
(
num_classes
,
ids
,
pre_out
,
p_sliced
,
in_grad_sliced
);
}
}
};
...
...
paddle/operators/math/CMakeLists.txt
浏览文件 @
fb9c08f0
...
...
@@ -27,7 +27,7 @@ else()
cc_library
(
context_project SRCS context_project.cc DEPS device_context math_function
)
cc_library
(
sequence2batch SRCS sequence2batch.cc DEPS device_context
)
cc_library
(
lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions
)
cc_library
(
matrix_bit_code SRCS matrix_bit_code.cc
)
cc_library
(
matrix_bit_code SRCS matrix_bit_code.cc
DEPS device_context
)
cc_library
(
maxouting SRCS maxouting.cc DEPS device_context
)
cc_library
(
unpooling SRCS unpooling.cc DEPS device_context
)
cc_library
(
gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function
)
...
...
paddle/operators/math/math_function.cc
浏览文件 @
fb9c08f0
...
...
@@ -302,12 +302,12 @@ void set_constant(const platform::DeviceContext& context,
#endif
}
template
struct
RowwiseAdd
<
platform
::
CPU
Place
,
float
>;
template
struct
RowwiseAdd
<
platform
::
CPU
Place
,
double
>;
template
struct
ColwiseSum
<
platform
::
CPU
Place
,
float
>;
template
struct
ColwiseSum
<
platform
::
CPU
Place
,
double
>;
template
struct
RowwiseSum
<
platform
::
CPU
Place
,
float
>;
template
struct
RowwiseSum
<
platform
::
CPU
Place
,
double
>;
template
struct
RowwiseAdd
<
platform
::
CPU
DeviceContext
,
float
>;
template
struct
RowwiseAdd
<
platform
::
CPU
DeviceContext
,
double
>;
template
struct
ColwiseSum
<
platform
::
CPU
DeviceContext
,
float
>;
template
struct
ColwiseSum
<
platform
::
CPU
DeviceContext
,
double
>;
template
struct
RowwiseSum
<
platform
::
CPU
DeviceContext
,
float
>;
template
struct
RowwiseSum
<
platform
::
CPU
DeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/math_function.h
浏览文件 @
fb9c08f0
...
...
@@ -128,10 +128,10 @@ struct ColwiseSum {
framework
::
Tensor
*
vec
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
RowwiseSum
{
void
operator
()(
const
platform
::
DeviceContext
&
contex
t
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vec
);
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
inpu
t
,
framework
::
Tensor
*
vec
);
};
}
// namespace math
...
...
paddle/operators/math/math_function_impl.h
浏览文件 @
fb9c08f0
...
...
@@ -79,19 +79,19 @@ void ColwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
in
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}})).
reshape
(
shape
);
}
template
<
typename
Place
,
typename
T
>
void
RowwiseSum
<
Place
,
T
>::
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vector
)
{
template
<
typename
DeviceContext
,
typename
T
>
void
RowwiseSum
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vector
)
{
auto
in_dims
=
input
.
dims
();
auto
size
=
input
.
numel
()
/
in_dims
[
1
];
PADDLE_ENFORCE_EQ
(
vector
->
numel
(),
size
);
auto
in
=
framework
::
EigenMatrix
<
T
>::
From
(
input
);
auto
vec
=
framework
::
EigenMatrix
<
T
>::
From
(
*
vector
);
auto
in
=
framework
::
EigenMatrix
<
T
,
Eigen
::
ColMajor
>::
From
(
input
);
auto
vec
=
framework
::
EigenMatrix
<
T
,
Eigen
::
ColMajor
>::
From
(
*
vector
);
Eigen
::
array
<
int
,
2
>
shape
({{
static_cast
<
int
>
(
size
),
1
}});
vec
.
reshape
(
shape
).
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
in
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}})).
reshape
(
shape
);
vec
.
reshape
(
shape
).
device
(
*
context
.
eigen_device
())
=
in
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
1
}})).
reshape
(
shape
);
}
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/matrix_bit_code.cc
浏览文件 @
fb9c08f0
...
...
@@ -50,50 +50,52 @@ namespace math {
for j < codeLength:
op(a(i, j), b(0, index(i, j)))
*/
template
<
class
CodeTable
,
class
Op
,
typename
T
>
static
void
AddByBitCodeT
(
Op
op
,
CodeTable
code_table
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
template
<
typename
T
,
class
CodeTable
,
class
Op
>
static
void
AddByBitCodeT
(
Op
op
,
CodeTable
code_table
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
size_t
num_classes
=
code_table
.
size
();
size_t
max_code_length
=
code_table
.
get_max_code_length
();
size_t
num_sample
=
tmat
.
dims
()[
0
];
size_t
width
=
vec
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_sample
;
++
i
)
{
auto
code
=
code_table
(
codes
.
data
<
T
>
()[
i
]
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
])
);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
+
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
+
+
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
op
(
tmat
.
data
<
T
>
()[
i
*
width
+
j
],
vec
.
data
<
T
>
()[
index
]);
auto
t
=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
auto
v
=
vec
.
data
<
T
>
()[
index
];
op
(
t
,
v
);
}
}
}
template
<
typename
T
>
void
AddByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
T
&
v
)
{
t
+=
v
;
};
AddByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
}
template
<
typename
T
>
void
AddByBitCodeGrad
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
T
&
v
)
{
v
+=
t
;
};
AddByBitCode
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
template
<
typename
T
,
class
CodeTable
>
void
SubByBitCodeT
(
CodeTable
code_table
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
)
{
// size_t max_code_length = code_table.get_max_code_length();
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
}
}
template
<
class
CodeTable
,
typename
T
>
void
SumByBitCodeT
(
CodeTable
code_table
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
sum
,
template
<
typename
T
,
class
CodeTable
>
void
SumByBitCodeT
(
CodeTable
code_table
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
const
T
&
scale_sum
)
{
size_t
max_code_length
=
code_table
.
get_max_code_length
();
//
size_t max_code_length = code_table.get_max_code_length();
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
0
;
auto
code
=
code_table
(
codes
.
data
<
T
>
()[
i
]
);
T
sm
=
static_cast
<
T
>
(
0.0
)
;
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
])
);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
...
...
@@ -103,105 +105,124 @@ void SumByBitCodeT(CodeTable code_table, const framework::Tensor& codes,
sum
.
data
<
T
>
()[
i
]
=
scale_sum
*
sm
;
}
}
/* For j < codeLength:
sum(i, 0) = \sum_j bit(i, j) * input(i, j)
*/
template
<
typename
T
>
void
SumByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
)
{
SumByBitCodeT
(
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
scale_sum
);
void
MatrixBitCodeFunctor
<
T
>::
Add
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
const
T
&
v
)
{
t
+=
v
;
};
AddByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
}
template
<
class
Op
,
class
CodeTable
,
typename
T
>
void
MulByBitCodeT
(
Op
op
,
CodeTable
code_table
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
)
{
size_t
num_classes
=
code_table
.
size
();
size_t
max_code_length
=
code_table
.
get_max_code_length
();
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_dim
=
input
.
dims
()[
1
];
size_t
o_width
=
tmat
.
dims
()[
1
];
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
T
&
v
)
{
v
+=
t
;
};
AddByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
)
{
SumByBitCodeT
<
T
>
(
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
sum
,
scale_sum
);
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
codes
.
data
<
T
>
()[
i
]
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
])
);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
op
(
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
],
weight
.
data
<
T
>
()
+
index
*
weight
.
dims
()[
1
],
input
.
data
<
T
>
()
+
i
*
input
.
dims
()[
1
],
input_dim
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_p
[
weight_width
*
index
+
k
]
*
input_p
[
input_width
*
i
+
k
];
}
std
::
cout
<<
sum
<<
std
::
endl
;
tmat_p
[
i
*
tmat_width
+
j
]
+=
sum
;
}
}
}
template
<
typename
T
>
void
MulByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
auto
op
=
[](
T
&
t
,
const
T
*
weight_row
,
const
T
*
input_row
,
size_t
input_dim
)
{
T
sum
=
0
;
for
(
size_t
k
=
0
;
k
<
input_dim
;
++
k
)
{
sum
+=
weight_row
[
k
]
*
input_row
[
k
];
}
t
+=
sum
;
};
MulByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
weight
,
input
);
}
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
template
<
typename
T
>
void
MulByBitCodeGradWeight
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
auto
op
=
[](
const
T
t
,
T
*
weight_row
,
const
T
*
input_row
,
size_t
input_dim
)
{
for
(
size_t
k
=
0
;
k
<
input_dim
;
++
k
)
{
weight_row
[
k
]
+=
t
*
input_row
[
k
];
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_p
[
weight_width
*
index
*
k
]
+=
tmat_p
[
i
*
weight_width
*
j
]
*
input_p
[
input_width
*
i
+
k
];
}
}
};
MulByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
weight
,
input
);
}
}
template
<
typename
T
>
void
MulByBitCodeGradError
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
)
{
auto
op
=
[](
const
T
t
,
const
T
*
weight_row
,
T
*
input_row
,
size_t
input_dim
)
{
for
(
size_t
k
=
0
;
k
<
input_dim
;
++
k
)
{
input_row
[
k
]
+=
t
*
weight_row
[
k
];
}
};
MulByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
weight
,
input
);
}
template
<
class
CodeTable
,
typename
T
>
void
SubByBitCodeT
(
CodeTable
code_table
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
)
{
size_t
max_code_length
=
code_table
.
get_max_code_length
();
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
)
{
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
codes
.
data
<
T
>
()[
i
]
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
])
);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
size_t
index
=
code
.
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_p
[
weight_width
*
index
*
k
]
+=
tmat_p
[
i
*
weight_width
*
j
]
*
weight_p
[
weight_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
void
SubByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
)
{
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
)
{
SubByBitCodeT
<
T
>
(
SimpleCodeTable
(
num_classes
),
codes
,
tmat
);
}
template
class
MatrixBitCodeFunctor
<
float
>;
template
class
MatrixBitCodeFunctor
<
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/matrix_bit_code.h
浏览文件 @
fb9c08f0
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -59,57 +60,50 @@ struct SimpleCodeTable {
int
max_code_length_
;
};
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
template
<
typename
T
>
void
AddByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
);
class
MatrixBitCodeFunctor
{
public:
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void
Add
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
template
<
typename
T
>
void
AddByBitCodeGrad
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
);
/* For j < code_length
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
template
<
typename
T
>
void
SumByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
);
*/
void
Sum
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
template
<
typename
T
>
void
MulByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
tmat(i, j) -= bit(i, j)
*/
void
Sub
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
Mul
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
template
<
typename
T
>
void
MulByBitCodeGradWeight
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
template
<
typename
T
>
void
MulByBitCodeGradError
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
);
/* For j < code_length
tmat(i, j) -= bit(i, j)
*/
template
<
typename
T
>
void
SubByBitCode
(
size_t
num_classes
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
);
/* For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void
MulGradWeight
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
MulGradError
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
);
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
fb9c08f0
...
...
@@ -126,6 +126,8 @@ PYBIND11_PLUGIN(core) {
.
def
(
"shape"
,
[](
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"set_float_element"
,
TensorSetElement
<
float
>
)
.
def
(
"get_float_element"
,
TensorGetElement
<
float
>
)
.
def
(
"set_int64_element"
,
TensorSetElement
<
int64_t
>
)
.
def
(
"get_int64_element"
,
TensorGetElement
<
int64_t
>
)
.
def
(
"set_double_element"
,
TensorSetElement
<
double
>
)
.
def
(
"get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
...
...
python/paddle/v2/fluid/tests/op_test.py
浏览文件 @
fb9c08f0
...
...
@@ -49,7 +49,6 @@ def create_op(scope, op_type, inputs, outputs, attrs):
for
attr_name
in
Operator
.
get_op_attr_names
(
op_type
):
if
attr_name
in
attrs
:
kwargs
[
attr_name
]
=
attrs
[
attr_name
]
return
Operator
(
op_type
,
**
kwargs
)
...
...
@@ -107,6 +106,8 @@ def get_numeric_gradient(scope,
tensor_to_check_dtype
=
np
.
float32
elif
tensor_to_check_dtype
==
core
.
DataType
.
FP64
:
tensor_to_check_dtype
=
np
.
float64
elif
tensor_to_check_dtype
==
core
.
DataType
.
INT64
:
tensor_to_check_dtype
=
np
.
int64
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
tensor_to_check_dtype
))
...
...
@@ -116,12 +117,16 @@ def get_numeric_gradient(scope,
def
__get_elem__
(
tensor
,
i
):
if
tensor_to_check_dtype
==
np
.
float32
:
return
tensor
.
get_float_element
(
i
)
elif
tensor_to_check_dtype
==
np
.
int64
:
return
tensor
.
get_int64_element
(
i
)
else
:
return
tensor
.
get_double_element
(
i
)
def
__set_elem__
(
tensor
,
i
,
e
):
if
tensor_to_check_dtype
==
np
.
float32
:
tensor
.
set_float_element
(
i
,
e
)
elif
tensor_to_check_dtype
==
np
.
int64
:
tensor
.
set_int64_element
(
i
,
e
)
else
:
tensor
.
set_double_element
(
i
,
e
)
...
...
@@ -355,13 +360,11 @@ class OpTest(unittest.TestCase):
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
if
not
type
(
output_names
)
is
list
:
output_names
=
[
output_names
]
numeric_grads
=
user_defined_grads
or
[
get_numeric_gradient
(
self
.
scope
,
...
...
@@ -457,9 +460,7 @@ class OpTest(unittest.TestCase):
# infer variable type and infer shape in compile-time
op
.
desc
.
infer_var_type
(
block
.
desc
)
op
.
desc
.
infer_shape
(
block
.
desc
)
mean_inputs
=
map
(
block
.
var
,
output_names
)
if
len
(
mean_inputs
)
==
1
:
loss
=
block
.
create_var
(
dtype
=
mean_inputs
[
0
].
dtype
,
shape
=
[
1
])
op
=
block
.
append_op
(
...
...
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
浏览文件 @
fb9c08f0
...
...
@@ -5,15 +5,15 @@ from op_test import OpTest
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid
_op
"
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
embded_size
=
10
batch_size
=
5
x
=
np
.
random
.
random
((
batch_size
,
embded_size
)).
astype
(
"float32"
)
parameter
=
np
.
random
.
random
(
(
batch_size
,
num_classes
-
1
,
embded_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
)
.
astype
(
"int64"
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
))
label
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
))
.
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Parameters'
:
parameter
,
...
...
@@ -21,13 +21,18 @@ class TestHSigmoidOp(OpTest):
'Bias'
:
bias
}
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
outputs
=
{
'Out'
:
label
}
self
.
outputs
=
{
'Out'
:
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
(
[
'X'
,
'Parameters'
,
'Label'
,
'Bias'
],
'Out'
,
no_grad_set
=
set
([
'Label'
]))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录