提交 f4a3856f 编写于 作者: W wubinghong

Refine the bifpn for efficientnet-d0

上级 946094e3
......@@ -64,7 +64,7 @@ class EfficientDet(object):
mixed_precision_enabled = mixed_precision_global_state() is not None
if mixed_precision_enabled:
im = fluid.layers.cast(im, 'float16')
body_feats = self.backbone(im, mode)
body_feats = self.backbone(im)
if mixed_precision_enabled:
body_feats = [fluid.layers.cast(f, 'float32') for f in body_feats]
body_feats = self.fpn(body_feats)
......
......@@ -83,9 +83,7 @@ class BiFPNCell(object):
default_initializer=fluid.initializer.Constant(1.))
self.eps = 1e-4
def __call__(self, inputs, cell_name='', is_first_time=False, p4_2_p5_2=[]):
assert len(inputs) == self.levels
assert ((is_first_time) and (len(p4_2_p5_2) != 0)) or ((not is_first_time) and (len(p4_2_p5_2) == 0))
def __call__(self, inputs, cell_name=''):
def upsample(feat):
return fluid.layers.resize_nearest(feat, scale=2.)
......@@ -108,7 +106,8 @@ class BiFPNCell(object):
bigates /= fluid.layers.reduce_sum(
bigates, dim=1, keep_dim=True) + self.eps
feature_maps = list(inputs) # make a copy # top down path
# top down path
feature_maps = list(inputs[:self.levels]) # make a copy
for l in range(self.levels - 1):
p = self.levels - l - 2
w1 = fluid.layers.slice(
......@@ -133,7 +132,8 @@ class BiFPNCell(object):
feature_maps[p] = fuse_conv(
w1 * below + w2 * inputs[p], name=name)
else:
if is_first_time:
# For the first loop in BiFPN
if len(inputs) != self.levels:
if p < self.inputs_layer_num:
w1 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
......@@ -141,7 +141,7 @@ class BiFPNCell(object):
trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(
w1 * feature_maps[p] + w2 * below + w3 * p4_2_p5_2[p - 1], name=name)
w1 * feature_maps[p] + w2 * below + w3 * inputs[p - 1 + self.levels], name=name)
else: # For P6"
w1 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
......@@ -233,7 +233,6 @@ class BiFPN(object):
name='resample_downsample_{}'.format(idx))
feats.append(feat)
# Handle the p4_2 and p5_2 with another 1x1 conv & bn layer
p4_2_p5_2 = []
for idx in range(1, len(inputs)):
feat = fluid.layers.conv2d(
inputs[idx],
......@@ -250,13 +249,10 @@ class BiFPN(object):
param_attr=ParamAttr(initializer=Constant(1.0), regularizer=L2Decay(0.)),
bias_attr=ParamAttr(regularizer=L2Decay(0.)),
name='resample2_bn_{}'.format(idx))
p4_2_p5_2.append(feat)
feats.append(feat)
biFPN = BiFPNCell(self.num_chan, self.levels, len(inputs))
for r in range(self.repeat):
if r == 0:
feats = biFPN(feats, cell_name='bifpn_{}'.format(r), is_first_time=True, p4_2_p5_2=p4_2_p5_2)
else:
feats = biFPN(feats, cell_name='bifpn_{}'.format(r))
return feats
......@@ -28,15 +28,12 @@ __all__ = ['EfficientNet']
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum', 'batch_norm_epsilon', 'width_coefficient',
'depth_coefficient', 'depth_divisor', 'min_depth', 'drop_connect_rate',
'relu_fn', 'batch_norm', 'use_se', 'local_pooling', 'condconv_num_experts',
'clip_projection_output', 'blocks_args', 'fix_head_stem'
'depth_coefficient', 'depth_divisor'
])
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'stride', 'se_ratio', 'conv_type', 'fused_conv',
'super_pixel', 'condconv'
'expand_ratio', 'stride', 'se_ratio'
])
GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
......@@ -63,13 +60,8 @@ def _decode_block_string(block_string):
input_filters=int(options['i']),
output_filters=int(options['o']),
expand_ratio=int(options['e']),
id_skip=('noskip' not in block_string),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s'][0]),
conv_type=int(options['c']) if 'c' in options else 0,
fused_conv=int(options['f']) if 'f' in options else 0,
super_pixel=int(options['p']) if 'p' in options else 0,
condconv=('cc' in block_string))
stride=int(options['s'][0]))
def get_model_params(scale):
......@@ -96,34 +88,27 @@ def get_model_params(scale):
'b5': (1.6, 2.2),
'b6': (1.8, 2.6),
'b7': (2.0, 3.1),
'l2': (4.3, 5.3),
}
w, d = params_dict[scale]
global_params = GlobalParams(
blocks_args=block_strings,
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
drop_connect_rate=0 if scale == 'b0' else 0.2,
width_coefficient=w,
depth_coefficient=d,
depth_divisor=8,
min_depth=None,
fix_head_stem=False,
use_se=True,
clip_projection_output=False)
depth_divisor=8)
return block_args, global_params
def round_filters(filters, global_params, skip=False):
def round_filters(filters, global_params):
multiplier = global_params.width_coefficient
if skip or not multiplier:
if not multiplier:
return filters
divisor = global_params.depth_divisor
filters *= multiplier
min_depth = global_params.min_depth or divisor
min_depth = divisor
new_filters = max(min_depth,
int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
......@@ -131,9 +116,9 @@ def round_filters(filters, global_params, skip=False):
return int(new_filters)
def round_repeats(repeats, global_params, skip=False):
def round_repeats(repeats, global_params):
multiplier = global_params.depth_coefficient
if skip or not multiplier:
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
......@@ -178,28 +163,14 @@ def batch_norm(inputs, momentum, eps, name=None):
bias_attr=bias_attr)
def _drop_connect(inputs, prob, mode):
if mode != 'train':
return inputs
keep_prob = 1.0 - prob
inputs_shape = fluid.layers.shape(inputs)
random_tensor = keep_prob + fluid.layers.uniform_random(shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
binary_tensor = fluid.layers.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def mb_conv_block(inputs,
input_filters,
output_filters,
expand_ratio,
kernel_size,
stride,
id_skip,
drop_connect_rate,
momentum,
eps,
mode,
se_ratio=None,
name=None):
feats = inputs
......@@ -238,9 +209,7 @@ def mb_conv_block(inputs,
feats = conv2d(feats, output_filters, 1, name=name + '_project_conv')
feats = batch_norm(feats, momentum, eps, name=name + '_bn2')
if id_skip and stride == 1 and input_filters == output_filters:
if drop_connect_rate:
feats = _drop_connect(feats, drop_connect_rate, mode)
if stride == 1 and input_filters == output_filters:
feats = fluid.layers.elementwise_add(feats, inputs)
return feats
......@@ -269,14 +238,12 @@ class EfficientNet(object):
self.scale = scale
self.use_se = use_se
def __call__(self, inputs, mode):
assert mode in ['train', 'test'], \
"only 'train' and 'test' mode are supported"
def __call__(self, inputs):
blocks_args, global_params = get_model_params(self.scale)
momentum = global_params.batch_norm_momentum
eps = global_params.batch_norm_epsilon
num_filters = round_filters(blocks_args[0].input_filters, global_params, global_params.fix_head_stem)
num_filters = round_filters(32, global_params)
feats = conv2d(
inputs,
num_filters=num_filters,
......@@ -287,61 +254,34 @@ class EfficientNet(object):
feats = fluid.layers.swish(feats)
layer_count = 0
num_blocks = sum([block_arg.num_repeat for block_arg in blocks_args])
feature_maps = []
for block_arg in blocks_args:
# Update block input and output filters based on depth multiplier.
block_arg = block_arg._replace(
input_filters=round_filters(block_arg.input_filters,
global_params),
output_filters=round_filters(block_arg.output_filters,
global_params),
num_repeat=round_repeats(block_arg.num_repeat,
global_params))
# The first block needs to take care of stride,
# and filter size increase.
drop_connect_rate = global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(layer_count) / num_blocks
feats = mb_conv_block(
feats,
block_arg.input_filters,
block_arg.output_filters,
block_arg.expand_ratio,
block_arg.kernel_size,
block_arg.stride,
block_arg.id_skip,
drop_connect_rate,
momentum,
eps,
mode,
se_ratio=block_arg.se_ratio,
name='_blocks.{}.'.format(layer_count))
layer_count += 1
# Other block
if block_arg.num_repeat > 1:
block_arg = block_arg._replace(input_filters=block_arg.output_filters, stride=1)
for _ in range(block_arg.num_repeat - 1):
drop_connect_rate = global_params.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(layer_count) / num_blocks
for b, block_arg in enumerate(blocks_args):
for r in range(block_arg.num_repeat):
input_filters = round_filters(block_arg.input_filters,
global_params)
output_filters = round_filters(block_arg.output_filters,
global_params)
kernel_size = block_arg.kernel_size
stride = block_arg.stride
se_ratio = None
if self.use_se:
se_ratio = block_arg.se_ratio
if r > 0:
input_filters = output_filters
stride = 1
feats = mb_conv_block(
feats,
block_arg.input_filters,
block_arg.output_filters,
input_filters,
output_filters,
block_arg.expand_ratio,
block_arg.kernel_size,
block_arg.stride,
block_arg.id_skip,
drop_connect_rate,
kernel_size,
stride,
momentum,
eps,
mode,
se_ratio=block_arg.se_ratio,
se_ratio=se_ratio,
name='_blocks.{}.'.format(layer_count))
layer_count += 1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册