提交 946094e3 编写于 作者: W wubinghong

Add drop-connected in efficientnet & refine the bifpn

上级 8064bab9
......@@ -39,7 +39,7 @@ EfficientHead:
output_decoder:
score_thresh: 0.0
nms_thresh: 0.5
pre_nms_top_n: 5000
pre_nms_top_n: 1000 # originally 5000
detections_per_im: 100
nms_eta: 1.0
......
......@@ -41,8 +41,7 @@ class FusionConv(object):
groups=self.num_chan,
param_attr=ParamAttr(
initializer=Xavier(), name=name + '_dw_w'),
bias_attr=False,
use_cudnn=False)
bias_attr=False)
# pointwise
x = fluid.layers.conv2d(
x,
......@@ -68,53 +67,18 @@ class FusionConv(object):
class BiFPNCell(object):
def __init__(self, num_chan, levels=5, inputs_layer_num=3):
"""
# Node id starts from the input features and monotonically increase whenever
# [Node NO.] Here is an example for level P3 - P7:
# {3: [0, 8],
# 4: [1, 7, 9],
# 5: [2, 6, 10],
# 6: [3, 5, 11],
# 7: [4, 12]}
# [Related Edge]
# {'feat_level': 6, 'inputs_offsets': [3, 4]}, # for P6'
# {'feat_level': 5, 'inputs_offsets': [2, 5]}, # for P5'
# {'feat_level': 4, 'inputs_offsets': [1, 6]}, # for P4'
# {'feat_level': 3, 'inputs_offsets': [0, 7]}, # for P3"
# {'feat_level': 4, 'inputs_offsets': [1, 7, 8]}, # for P4"
# {'feat_level': 5, 'inputs_offsets': [2, 6, 9]}, # for P5"
# {'feat_level': 6, 'inputs_offsets': [3, 5, 10]}, # for P6"
# {'feat_level': 7, 'inputs_offsets': [4, 11]}, # for P7"
P7 (4) --------------> P7" (12)
|----------| ↑
↓ |
P6 (3) --> P6' (5) --> P6" (11)
|----------|----------↑↑
↓ |
P5 (2) --> P5' (6) --> P5" (10)
|----------|----------↑↑
↓ |
P4 (1) --> P4' (7) --> P4" (9)
|----------|----------↑↑
|----------↓|
P3 (0) --------------> P3" (8)
"""
super(BiFPNCell, self).__init__()
self.levels = levels
self.num_chan = num_chan
num_trigates = levels - 2
num_bigates = levels
self.inputs_layer_num = inputs_layer_num
# Learnable weights of [P4", P5", P6"]
self.trigates = fluid.layers.create_parameter(
shape=[levels - 2, 3],
shape=[num_trigates, 3],
dtype='float32',
default_initializer=fluid.initializer.Constant(1.))
# Learnable weights of [P6', P5', P4', P3", P7"]
self.bigates = fluid.layers.create_parameter(
shape=[levels, 2],
shape=[num_bigates, 2],
dtype='float32',
default_initializer=fluid.initializer.Constant(1.))
self.eps = 1e-4
......@@ -123,31 +87,38 @@ class BiFPNCell(object):
assert len(inputs) == self.levels
assert ((is_first_time) and (len(p4_2_p5_2) != 0)) or ((not is_first_time) and (len(p4_2_p5_2) == 0))
# upsample operator
def upsample(feat):
return fluid.layers.resize_nearest(feat, scale=2.)
# downsample operator
def downsample(feat):
return fluid.layers.pool2d(feat, pool_type='max', pool_size=3, pool_stride=2, pool_padding='SAME')
return fluid.layers.pool2d(
feat,
pool_type='max',
pool_size=3,
pool_stride=2,
pool_padding='SAME')
# 3x3 fuse conv after OP combine
fuse_conv = FusionConv(self.num_chan)
# Normalize weight
# normalize weight
trigates = fluid.layers.relu(self.trigates)
bigates = fluid.layers.relu(self.bigates)
trigates /= fluid.layers.reduce_sum(trigates, dim=1, keep_dim=True) + self.eps
bigates /= fluid.layers.reduce_sum(bigates, dim=1, keep_dim=True) + self.eps
trigates /= fluid.layers.reduce_sum(
trigates, dim=1, keep_dim=True) + self.eps
bigates /= fluid.layers.reduce_sum(
bigates, dim=1, keep_dim=True) + self.eps
feature_maps = list(inputs) # make a copy, 依次是 [P3, P4, P5, P6, P7]
# top down path
feature_maps = list(inputs) # make a copy # top down path
for l in range(self.levels - 1):
p = self.levels - l - 2
w1 = fluid.layers.slice(bigates, axes=[0, 1], starts=[l, 0], ends=[l + 1, 1])
w2 = fluid.layers.slice(bigates, axes=[0, 1], starts=[l, 1], ends=[l + 1, 2])
above_layer = upsample(feature_maps[p + 1])
feature_maps[p] = fuse_conv(w1 * above_layer + w2 * inputs[p], name='{}_tb_{}'.format(cell_name, l))
w1 = fluid.layers.slice(
bigates, axes=[0, 1], starts=[l, 0], ends=[l + 1, 1])
w2 = fluid.layers.slice(
bigates, axes=[0, 1], starts=[l, 1], ends=[l + 1, 2])
above = upsample(feature_maps[p + 1])
feature_maps[p] = fuse_conv(
w1 * above + w2 * inputs[p],
name='{}_tb_{}'.format(cell_name, l))
# bottom up path
for l in range(1, self.levels):
p = l
......@@ -155,26 +126,40 @@ class BiFPNCell(object):
below = downsample(feature_maps[p - 1])
if p == self.levels - 1:
# handle P7
w1 = fluid.layers.slice(bigates, axes=[0, 1], starts=[p, 0], ends=[p + 1, 1])
w2 = fluid.layers.slice(bigates, axes=[0, 1], starts=[p, 1], ends=[p + 1, 2])
feature_maps[p] = fuse_conv(w1 * below + w2 * inputs[p], name=name)
w1 = fluid.layers.slice(
bigates, axes=[0, 1], starts=[p, 0], ends=[p + 1, 1])
w2 = fluid.layers.slice(
bigates, axes=[0, 1], starts=[p, 1], ends=[p + 1, 2])
feature_maps[p] = fuse_conv(
w1 * below + w2 * inputs[p], name=name)
else:
if is_first_time:
if p < self.inputs_layer_num:
w1 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w1 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(w1 * feature_maps[p] + w2 * below + w3 * p4_2_p5_2[p - 1], name=name)
feature_maps[p] = fuse_conv(
w1 * feature_maps[p] + w2 * below + w3 * p4_2_p5_2[p - 1], name=name)
else: # For P6"
w1 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
w1 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(
w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
else:
w1 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
w1 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
w2 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
w3 = fluid.layers.slice(
trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
feature_maps[p] = fuse_conv(
w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
return feature_maps
......@@ -197,7 +182,7 @@ class BiFPN(object):
def __call__(self, inputs):
feats = []
# Squeeze the channel with 1x1 conv
# NOTE add two extra levels
for idx in range(len(inputs)):
if inputs[idx].shape[1] != self.num_chan:
feat = fluid.layers.conv2d(
......@@ -212,7 +197,8 @@ class BiFPN(object):
feat,
momentum=0.997,
epsilon=1e-04,
param_attr=ParamAttr(initializer=Constant(1.0), regularizer=L2Decay(0.)),
param_attr=ParamAttr(
initializer=Constant(1.0), regularizer=L2Decay(0.)),
bias_attr=ParamAttr(regularizer=L2Decay(0.)),
name='resample_bn_{}'.format(idx))
else:
......@@ -266,7 +252,6 @@ class BiFPN(object):
name='resample2_bn_{}'.format(idx))
p4_2_p5_2.append(feat)
# BiFPN, repeated
biFPN = BiFPNCell(self.num_chan, self.levels, len(inputs))
for r in range(self.repeat):
if r == 0:
......
......@@ -54,8 +54,8 @@ def _decode_block_string(block_string):
key, value = splits[:2]
options[key] = value
if 's' not in options or len(options['s']) != 2:
raise ValueError('Strides options should be a pair of integers.')
assert (('s' in options and len(options['s']) == 1) or
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
return BlockArgs(
kernel_size=int(options['k']),
......@@ -118,23 +118,20 @@ def get_model_params(scale):
def round_filters(filters, global_params, skip=False):
"""Round number of filters based on depth multiplier."""
multiplier = global_params.width_coefficient
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
if skip or not multiplier:
return filters
divisor = global_params.depth_divisor
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
min_depth = global_params.min_depth or divisor
new_filters = max(min_depth,
int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, global_params, skip=False):
"""Round number of filters based on depth multiplier."""
multiplier = global_params.depth_coefficient
if skip or not multiplier:
return repeats
......@@ -148,8 +145,7 @@ def conv2d(inputs,
padding='SAME',
groups=1,
use_bias=False,
name='conv2d',
use_cudnn=True):
name='conv2d'):
param_attr = fluid.ParamAttr(name=name + '_weights')
bias_attr = False
if use_bias:
......@@ -164,8 +160,7 @@ def conv2d(inputs,
stride=stride,
padding=padding,
param_attr=param_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn)
bias_attr=bias_attr)
return feats
......@@ -193,45 +188,42 @@ def _drop_connect(inputs, prob, mode):
output = inputs / keep_prob * binary_tensor
return output
def mb_conv_block(inputs,
input_filters,
output_filters,
expand_ratio,
kernel_size,
stride,
id_skip,
drop_connect_rate,
momentum,
eps,
block_arg,
drop_connect_rate,
mode,
se_ratio=None,
name=None):
feats = inputs
num_filters = input_filters * expand_ratio
# Expansion
if expand_ratio != 1:
feats = conv2d(feats, num_filters, 1, name=name + '_expand_conv')
feats = batch_norm(feats, momentum, eps, name=name + '_bn0')
feats = fluid.layers.swish(feats)
# Depthwise Convolution
feats = conv2d(
feats,
num_filters,
kernel_size,
stride,
groups=num_filters,
name=name + '_depthwise_conv',
use_cudnn=False)
name=name + '_depthwise_conv')
feats = batch_norm(feats, momentum, eps, name=name + '_bn1')
feats = fluid.layers.swish(feats)
# Squeeze and Excitation
if se_ratio is not None:
filter_squeezed = max(1, int(input_filters * se_ratio))
squeezed = fluid.layers.pool2d(
feats, pool_type='avg', global_pooling=True, use_cudnn=True)
feats, pool_type='avg', global_pooling=True)
squeezed = conv2d(
squeezed,
filter_squeezed,
......@@ -243,12 +235,10 @@ def mb_conv_block(inputs,
squeezed, num_filters, 1, use_bias=True, name=name + '_se_expand')
feats = feats * fluid.layers.sigmoid(squeezed)
# Project_conv_norm
feats = conv2d(feats, output_filters, 1, name=name + '_project_conv')
feats = batch_norm(feats, momentum, eps, name=name + '_bn2')
# Skip connection and drop connect
if block_arg.id_skip and block_arg.stride == 1 and input_filters == output_filters:
if id_skip and stride == 1 and input_filters == output_filters:
if drop_connect_rate:
feats = _drop_connect(feats, drop_connect_rate, mode)
feats = fluid.layers.elementwise_add(feats, inputs)
......@@ -268,10 +258,7 @@ class EfficientNet(object):
"""
__shared__ = ['norm_type']
def __init__(self,
scale='b0',
use_se=True,
norm_type='bn'):
def __init__(self, scale='b0', use_se=True, norm_type='bn'):
assert scale in ['b' + str(i) for i in range(8)], \
"valid scales are b0 - b7"
assert norm_type in ['bn', 'sync_bn'], \
......@@ -285,21 +272,23 @@ class EfficientNet(object):
def __call__(self, inputs, mode):
assert mode in ['train', 'test'], \
"only 'train' and 'test' mode are supported"
blocks_args, global_params = get_model_params(self.scale)
momentum = global_params.batch_norm_momentum
eps = global_params.batch_norm_epsilon
# Stem part.
num_filters = round_filters(blocks_args[0].input_filters, global_params, global_params.fix_head_stem)
feats = conv2d(inputs, num_filters=num_filters, filter_size=3, stride=2, name='_conv_stem')
feats = conv2d(
inputs,
num_filters=num_filters,
filter_size=3,
stride=2,
name='_conv_stem')
feats = batch_norm(feats, momentum=momentum, eps=eps, name='_bn0')
feats = fluid.layers.swish(feats)
# Builds blocks.
feature_maps = []
layer_count = 0
num_blocks = sum([block_arg.num_repeat for block_arg in blocks_args])
feature_maps = []
for block_arg in blocks_args:
# Update block input and output filters based on depth multiplier.
......@@ -323,10 +312,10 @@ class EfficientNet(object):
block_arg.expand_ratio,
block_arg.kernel_size,
block_arg.stride,
block_arg.id_skip,
drop_connect_rate,
momentum,
eps,
block_arg,
drop_connect_rate,
mode,
se_ratio=block_arg.se_ratio,
name='_blocks.{}.'.format(layer_count))
......@@ -347,15 +336,16 @@ class EfficientNet(object):
block_arg.expand_ratio,
block_arg.kernel_size,
block_arg.stride,
block_arg.id_skip,
drop_connect_rate,
momentum,
eps,
block_arg,
drop_connect_rate,
mode,
se_ratio=block_arg.se_ratio,
name='_blocks.{}.'.format(layer_count))
layer_count += 1
feature_maps.append(feats)
return list(feature_maps[i] for i in [2, 4, 6]) # 1/8, 1/16, 1/32
return list(feature_maps[i] for i in [2, 4, 6])
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册