未验证 提交 f239d898 编写于 作者: W wangxinxin08 提交者: GitHub

add senet (#2553)

* add senet

* add annotations according to review
上级 7b8c9eab
......@@ -8,7 +8,6 @@ ResNet:
depth: 101
groups: 64
base_width: 4
base_channels: 64
variant: d
norm_type: bn
freeze_at: 0
......
......@@ -9,7 +9,6 @@ ResNet:
depth: 101
groups: 64
base_width: 4
base_channels: 64
variant: d
norm_type: bn
freeze_at: 0
......
......@@ -10,7 +10,6 @@ ResNet:
variant: d
groups: 64
base_width: 4
base_channels: 64
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
......
......@@ -10,7 +10,6 @@ ResNet:
depth: 101
groups: 64
base_width: 4
base_channels: 64
variant: d
norm_type: bn
freeze_at: 0
......
......@@ -10,7 +10,6 @@ ResNet:
depth: 101
groups: 64
base_width: 4
base_channels: 64
variant: d
norm_type: bn
freeze_at: 0
......
......@@ -11,7 +11,6 @@ ResNet:
variant: d
groups: 64
base_width: 4
base_channels: 64
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
......
......@@ -11,7 +11,6 @@ ResNet:
variant: d
groups: 64
base_width: 4
base_channels: 64
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
......
......@@ -20,6 +20,7 @@ from . import mobilenet_v3
from . import hrnet
from . import blazenet
from . import ghostnet
from . import senet
from .vgg import *
from .resnet import *
......@@ -29,3 +30,4 @@ from .mobilenet_v3 import *
from .hrnet import *
from .blazenet import *
from .ghostnet import *
from .senet import *
......@@ -20,11 +20,12 @@ import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Uniform
from ppdet.modeling.layers import DeformableConvV2
from .name_adapter import NameAdapter
from ..shape_spec import ShapeSpec
__all__ = ['ResNet', 'Res5Head']
__all__ = ['ResNet', 'Res5Head', 'Blocks', 'BasicBlock', 'BottleNeck']
ResNet_cfg = {
18: [2, 2, 2, 2],
......@@ -41,15 +42,13 @@ class ConvNormLayer(nn.Layer):
ch_out,
filter_size,
stride,
name_adapter,
groups=1,
act=None,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
lr=1.0,
dcn_v2=False,
name=None):
dcn_v2=False):
super(ConvNormLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn']
self.norm_type = norm_type
......@@ -63,8 +62,7 @@ class ConvNormLayer(nn.Layer):
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=paddle.ParamAttr(
learning_rate=lr, ),
weight_attr=paddle.ParamAttr(learning_rate=lr),
bias_attr=False)
else:
self.conv = DeformableConvV2(
......@@ -74,12 +72,9 @@ class ConvNormLayer(nn.Layer):
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=paddle.ParamAttr(
learning_rate=lr, ),
bias_attr=False,
name=name)
weight_attr=paddle.ParamAttr(learning_rate=lr),
bias_attr=False)
bn_name = name_adapter.fix_conv_norm_name(name)
norm_lr = 0. if freeze_norm else lr
param_attr = paddle.ParamAttr(
learning_rate=norm_lr,
......@@ -116,24 +111,58 @@ class ConvNormLayer(nn.Layer):
return out
class SELayer(nn.Layer):
def __init__(self, ch, reduction_ratio=16):
super(SELayer, self).__init__()
self.pool = nn.AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(ch)
c_ = ch // reduction_ratio
self.squeeze = nn.Linear(
ch,
c_,
weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=True)
stdv = 1.0 / math.sqrt(c_)
self.extract = nn.Linear(
c_,
ch,
weight_attr=paddle.ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=True)
def forward(self, inputs):
out = self.pool(inputs)
out = paddle.squeeze(out, axis=[2, 3])
out = self.squeeze(out)
out = F.relu(out)
out = self.extract(out)
out = F.sigmoid(out)
out = paddle.unsqueeze(out, axis=[2, 3])
scale = out * inputs
return scale
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
name_adapter,
name,
variant='b',
groups=1,
base_width=64,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
dcn_v2=False,
std_senet=False):
super(BasicBlock, self).__init__()
assert dcn_v2 is False, "Not implemented yet."
conv_name1, conv_name2, shortcut_name = name_adapter.fix_basicblock_name(
name)
assert groups == 1 and base_width == 64, 'BasicBlock only supports groups=1 and base_width=64'
self.shortcut = shortcut
if not shortcut:
......@@ -150,54 +179,52 @@ class BasicBlock(nn.Layer):
ch_out=ch_out,
filter_size=1,
stride=1,
name_adapter=name_adapter,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=shortcut_name))
lr=lr))
else:
self.short = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=stride,
name_adapter=name_adapter,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=shortcut_name)
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=3,
stride=stride,
name_adapter=name_adapter,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=conv_name1)
lr=lr)
self.branch2b = ConvNormLayer(
ch_in=ch_out,
ch_out=ch_out,
filter_size=3,
stride=1,
name_adapter=name_adapter,
act=None,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=conv_name2)
lr=lr)
self.std_senet = std_senet
if self.std_senet:
self.se = SELayer(ch_out)
def forward(self, inputs):
out = self.branch2a(inputs)
out = self.branch2b(out)
if self.std_senet:
out = self.se(out)
if self.shortcut:
short = inputs
......@@ -211,22 +238,23 @@ class BasicBlock(nn.Layer):
class BottleNeck(nn.Layer):
expansion = 4
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
name_adapter,
name,
variant='b',
groups=1,
base_width=4,
base_channels=64,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
dcn_v2=False,
std_senet=False):
super(BottleNeck, self).__init__()
if variant == 'a':
stride1, stride2 = stride, 1
......@@ -234,15 +262,7 @@ class BottleNeck(nn.Layer):
stride1, stride2 = 1, stride
# ResNeXt
if groups == 1:
width = ch_out
else:
width = int(
math.floor(ch_out * (base_width * 1.0 / base_channels)) *
groups)
conv_name1, conv_name2, conv_name3, \
shortcut_name = name_adapter.fix_bottleneck_name(name)
width = int(ch_out * (base_width / 64.)) * groups
self.shortcut = shortcut
if not shortcut:
......@@ -256,75 +276,73 @@ class BottleNeck(nn.Layer):
'conv',
ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out * 4,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=1,
name_adapter=name_adapter,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=shortcut_name))
lr=lr))
else:
self.short = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out * 4,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=stride,
name_adapter=name_adapter,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=shortcut_name)
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=width,
filter_size=1,
stride=stride1,
name_adapter=name_adapter,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=conv_name1)
lr=lr)
self.branch2b = ConvNormLayer(
ch_in=width,
ch_out=width,
filter_size=3,
stride=stride2,
name_adapter=name_adapter,
groups=groups,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
dcn_v2=dcn_v2,
name=conv_name2)
dcn_v2=dcn_v2)
self.branch2c = ConvNormLayer(
ch_in=width,
ch_out=ch_out * 4,
ch_out=ch_out * self.expansion,
filter_size=1,
stride=1,
name_adapter=name_adapter,
groups=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
name=conv_name3)
lr=lr)
self.std_senet = std_senet
if self.std_senet:
self.se = SELayer(ch_out * self.expansion)
def forward(self, inputs):
out = self.branch2a(inputs)
out = self.branch2b(out)
out = self.branch2c(out)
if self.std_senet:
out = self.se(out)
if self.shortcut:
short = inputs
else:
......@@ -338,7 +356,7 @@ class BottleNeck(nn.Layer):
class Blocks(nn.Layer):
def __init__(self,
depth,
block,
ch_in,
ch_out,
count,
......@@ -346,55 +364,37 @@ class Blocks(nn.Layer):
stage_num,
variant='b',
groups=1,
base_width=-1,
base_channels=-1,
base_width=64,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
dcn_v2=False,
std_senet=False):
super(Blocks, self).__init__()
self.blocks = []
for i in range(count):
conv_name = name_adapter.fix_layer_warp_name(stage_num, count, i)
if depth >= 50:
block = self.add_sublayer(
layer = self.add_sublayer(
conv_name,
BottleNeck(
ch_in=ch_in if i == 0 else ch_out * 4,
block(
ch_in=ch_in,
ch_out=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
name_adapter=name_adapter,
name=conv_name,
variant=variant,
groups=groups,
base_width=base_width,
base_channels=base_channels,
lr=lr,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2))
else:
ch_in = ch_in // 4 if i > 0 else ch_in
block = self.add_sublayer(
conv_name,
BasicBlock(
ch_in=ch_in if i == 0 else ch_out,
ch_out=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
name_adapter=name_adapter,
name=conv_name,
variant=variant,
lr=lr,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2))
self.blocks.append(block)
dcn_v2=dcn_v2,
std_senet=std_senet))
self.blocks.append(layer)
if i == 0:
ch_in = ch_out * block.expansion
def forward(self, inputs):
block_out = inputs
......@@ -410,23 +410,47 @@ class ResNet(nn.Layer):
def __init__(self,
depth=50,
ch_in=64,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
base_width=-1,
base_channels=-1,
base_width=64,
norm_type='bn',
norm_decay=0,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
num_stages=4):
num_stages=4,
std_senet=False):
"""
Residual Network, see https://arxiv.org/abs/1512.03385
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
ch_in (int): output channel of first stage, default 64
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
num_stages (int): total num of stages
std_senet (bool): whether use senet, default True
"""
super(ResNet, self).__init__()
self._model_type = 'ResNet' if groups == 1 else 'ResNeXt'
assert num_stages >= 1 and num_stages <= 4
self.depth = depth
self.variant = variant
self.groups = groups
self.base_width = base_width
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
......@@ -456,12 +480,12 @@ class ResNet(nn.Layer):
conv1_name = na.fix_c1_stage_name()
if variant in ['c', 'd']:
conv_def = [
[3, 32, 3, 2, "conv1_1"],
[32, 32, 3, 1, "conv1_2"],
[32, 64, 3, 1, "conv1_3"],
[3, ch_in // 2, 3, 2, "conv1_1"],
[ch_in // 2, ch_in // 2, 3, 1, "conv1_2"],
[ch_in // 2, ch_in, 3, 1, "conv1_3"],
]
else:
conv_def = [[3, 64, 7, 2, conv1_name]]
conv_def = [[3, ch_in, 7, 2, conv1_name]]
self.conv1 = nn.Sequential()
for (c_in, c_out, k, s, _name) in conv_def:
self.conv1.add_sublayer(
......@@ -471,20 +495,18 @@ class ResNet(nn.Layer):
ch_out=c_out,
filter_size=k,
stride=s,
name_adapter=na,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=1.0,
name=_name))
lr=1.0))
ch_in_list = [64, 256, 512, 1024]
self.ch_in = ch_in
ch_out_list = [64, 128, 256, 512]
self.expansion = 4 if depth >= 50 else 1
block = BottleNeck if depth >= 50 else BasicBlock
self._out_channels = [self.expansion * v for v in ch_out_list]
self._out_channels = [block.expansion * v for v in ch_out_list]
self._out_strides = [4, 8, 16, 32]
self.res_layers = []
......@@ -495,9 +517,8 @@ class ResNet(nn.Layer):
res_layer = self.add_sublayer(
res_name,
Blocks(
depth,
ch_in_list[i] // 4
if i > 0 and depth < 50 else ch_in_list[i],
block,
self.ch_in,
ch_out_list[i],
count=block_nums[i],
name_adapter=na,
......@@ -505,13 +526,14 @@ class ResNet(nn.Layer):
variant=variant,
groups=groups,
base_width=base_width,
base_channels=base_channels,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=(i in self.dcn_v2_stages)))
dcn_v2=(i in self.dcn_v2_stages),
std_senet=std_senet))
self.res_layers.append(res_layer)
self.ch_in = self._out_channels[i]
@property
def out_shape(self):
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from .resnet import ResNet, Blocks, BasicBlock, BottleNeck
__all__ = ['SENet', 'SERes5Head']
@register
@serializable
class SENet(ResNet):
__shared__ = ['norm_type']
def __init__(self,
depth=50,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
base_width=64,
norm_type='bn',
norm_decay=0,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
std_senet=True,
num_stages=4):
"""
Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
num_stages (int): total num of stages
"""
super(SENet, self).__init__(
depth=depth,
variant=variant,
lr_mult_list=lr_mult_list,
ch_in=128,
groups=groups,
base_width=base_width,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
freeze_at=freeze_at,
return_idx=return_idx,
dcn_v2_stages=dcn_v2_stages,
std_senet=std_senet,
num_stages=num_stages)
@register
class SERes5Head(nn.Layer):
def __init__(self,
depth=50,
variant='b',
lr_mult=1.0,
groups=1,
base_width=64,
norm_type='bn',
norm_decay=0,
dcn_v2=False,
freeze_norm=False,
std_senet=True):
"""
SERes5Head layer
Args:
depth (int): SENet depth, should be 50, 101, 152
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
lr_mult (list): learning rate ratio of SERes5Head, default as 1.0.
groups (int): group convolution cardinality
base_width (int): base width of each group convolution
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
norm_decay (float): weight decay for normalization layer weights
dcn_v2_stages (list): index of stages who select deformable conv v2
std_senet (bool): whether use senet, default True
"""
super(SERes5Head, self).__init__()
ch_out = 512
ch_in = 256 if depth < 50 else 1024
na = NameAdapter(self)
block = BottleNeck if depth >= 50 else BasicBlock
self.res5 = Blocks(
block,
ch_in,
ch_out,
count=3,
name_adapter=na,
stage_num=5,
variant=variant,
groups=groups,
base_width=base_width,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2,
std_senet=std_senet)
self.ch_out = ch_out * block.expansion
@property
def out_shape(self):
return [ShapeSpec(
channels=self.ch_out,
stride=16, )]
def forward(self, roi_feat):
y = self.res5(roi_feat)
return y
......@@ -52,31 +52,25 @@ class DeformableConvV2(nn.Layer):
bias_attr=None,
lr_scale=1,
regularizer=None,
skip_quant=False,
name=None):
skip_quant=False):
super(DeformableConvV2, self).__init__()
self.offset_channel = 2 * kernel_size**2
self.mask_channel = kernel_size**2
if lr_scale == 1 and regularizer is None:
offset_bias_attr = ParamAttr(
initializer=Constant(0.),
name='{}._conv_offset.bias'.format(name))
offset_bias_attr = ParamAttr(initializer=Constant(0.))
else:
offset_bias_attr = ParamAttr(
initializer=Constant(0.),
learning_rate=lr_scale,
regularizer=regularizer,
name='{}._conv_offset.bias'.format(name))
regularizer=regularizer)
self.conv_offset = nn.Conv2D(
in_channels,
3 * kernel_size**2,
kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
weight_attr=ParamAttr(
initializer=Constant(0.0),
name='{}._conv_offset.weight'.format(name)),
weight_attr=ParamAttr(initializer=Constant(0.0)),
bias_attr=offset_bias_attr)
if skip_quant:
self.conv_offset.skip_quant = True
......@@ -84,7 +78,6 @@ class DeformableConvV2(nn.Layer):
if bias_attr:
# in FCOS-DCN head, specifically need learning_rate and regularizer
dcn_bias_attr = ParamAttr(
name=name + "_bias",
initializer=Constant(value=0),
regularizer=L2Decay(0.),
learning_rate=2.)
......
......@@ -43,8 +43,7 @@ class Upsample(nn.Layer):
regularizer=L2Decay(0.),
learning_rate=2.),
lr_scale=2.,
regularizer=L2Decay(0.),
name=name)
regularizer=L2Decay(0.))
self.bn = batch_norm(
ch_out, norm_type='bn', initializer=Constant(1.), name=name)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册