提交 d9a52223 编写于 作者: J jshower

code style

上级 9fe938cb
......@@ -70,14 +70,15 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
fluid.layers.embedding(
size=[word_dict_len, word_dim],
input=x,
param_attr=fluid.ParamAttr(
name=embedding_name, trainable=False)) for x in word_input
param_attr=fluid.ParamAttr(name=embedding_name, trainable=False))
for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0_layers = [
fluid.layers.fc(input=emb, size=hidden_dim, act='tanh') for emb in emb_layers
fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
for emb in emb_layers
]
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
......@@ -163,8 +164,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
crf_cost = fluid.layers.linear_chain_crf(
input=feature_out,
label=target,
param_attr=fluid.ParamAttr(
name='crfw', learning_rate=mix_hidden_lr))
param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr))
avg_cost = fluid.layers.mean(crf_cost)
# TODO(qiao)
......@@ -189,8 +189,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.test(), buf_size=8192),
paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......@@ -223,20 +222,21 @@ def train(use_cuda, save_dirname=None, is_local=True):
exe)
if batch_id % 10 == 0:
print("avg_cost:" + str(cost) + " precision:" + str(
precision) + " recall:" + str(recall) + " f1_score:" +
str(f1_score) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(
pass_recall) + " pass_f1_score:" + str(
pass_f1_score))
print(
"avg_cost:" + str(cost) + " precision:" +
str(precision) + " recall:" + str(recall) +
" f1_score:" + str(f1_score) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(pass_recall)
+ " pass_f1_score:" + str(pass_f1_score))
if batch_id != 0:
print("second per batch: " + str((time.time(
) - start_time) / batch_id))
print("second per batch: " + str(
(time.time() - start_time) / batch_id))
# Set the threshold low to speed up the CI test
if float(pass_precision) > 0.05:
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
fluid.io.save_inference_model(
save_dirname, [
'word_data', 'verb_data', 'ctx_n2_data',
'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
'ctx_p2_data', 'mark_data'
......@@ -320,7 +320,8 @@ def infer(use_cuda, save_dirname=None):
assert feed_target_names[6] == 'ctx_p2_data'
assert feed_target_names[7] == 'mark_data'
results = exe.run(inference_program,
results = exe.run(
inference_program,
feed={
feed_target_names[0]: word,
feed_target_names[1]: pred,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册