diff --git a/python/paddle/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/fluid/tests/book/test_label_semantic_roles.py index 5fc64ea9588d96c55ff048c3cbdfeae13f417dd9..4f5d30ac002f835910871c835cfb5749612b958f 100644 --- a/python/paddle/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/fluid/tests/book/test_label_semantic_roles.py @@ -70,14 +70,15 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, fluid.layers.embedding( size=[word_dict_len, word_dim], input=x, - param_attr=fluid.ParamAttr( - name=embedding_name, trainable=False)) for x in word_input + param_attr=fluid.ParamAttr(name=embedding_name, trainable=False)) + for x in word_input ] emb_layers.append(predicate_embedding) emb_layers.append(mark_embedding) hidden_0_layers = [ - fluid.layers.fc(input=emb, size=hidden_dim, act='tanh') for emb in emb_layers + fluid.layers.fc(input=emb, size=hidden_dim, act='tanh') + for emb in emb_layers ] hidden_0 = fluid.layers.sums(input=hidden_0_layers) @@ -163,8 +164,7 @@ def train(use_cuda, save_dirname=None, is_local=True): crf_cost = fluid.layers.linear_chain_crf( input=feature_out, label=target, - param_attr=fluid.ParamAttr( - name='crfw', learning_rate=mix_hidden_lr)) + param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr)) avg_cost = fluid.layers.mean(crf_cost) # TODO(qiao) @@ -189,8 +189,7 @@ def train(use_cuda, save_dirname=None, is_local=True): num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) train_data = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.conll05.test(), buf_size=8192), + paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() @@ -223,24 +222,25 @@ def train(use_cuda, save_dirname=None, is_local=True): exe) if batch_id % 10 == 0: - print("avg_cost:" + str(cost) + " precision:" + str( - precision) + " recall:" + str(recall) + " f1_score:" + - str(f1_score) + " pass_precision:" + str( - pass_precision) + " pass_recall:" + str( - pass_recall) + " pass_f1_score:" + str( - pass_f1_score)) + print( + "avg_cost:" + str(cost) + " precision:" + + str(precision) + " recall:" + str(recall) + + " f1_score:" + str(f1_score) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str(pass_recall) + + " pass_f1_score:" + str(pass_f1_score)) if batch_id != 0: - print("second per batch: " + str((time.time( - ) - start_time) / batch_id)) + print("second per batch: " + str( + (time.time() - start_time) / batch_id)) # Set the threshold low to speed up the CI test if float(pass_precision) > 0.05: if save_dirname is not None: # TODO(liuyiqun): Change the target to crf_decode - fluid.io.save_inference_model(save_dirname, [ - 'word_data', 'verb_data', 'ctx_n2_data', - 'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data', - 'ctx_p2_data', 'mark_data' - ], [feature_out], exe) + fluid.io.save_inference_model( + save_dirname, [ + 'word_data', 'verb_data', 'ctx_n2_data', + 'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data', + 'ctx_p2_data', 'mark_data' + ], [feature_out], exe) return batch_id = batch_id + 1 @@ -320,19 +320,20 @@ def infer(use_cuda, save_dirname=None): assert feed_target_names[6] == 'ctx_p2_data' assert feed_target_names[7] == 'mark_data' - results = exe.run(inference_program, - feed={ - feed_target_names[0]: word, - feed_target_names[1]: pred, - feed_target_names[2]: ctx_n2, - feed_target_names[3]: ctx_n1, - feed_target_names[4]: ctx_0, - feed_target_names[5]: ctx_p1, - feed_target_names[6]: ctx_p2, - feed_target_names[7]: mark - }, - fetch_list=fetch_targets, - return_numpy=False) + results = exe.run( + inference_program, + feed={ + feed_target_names[0]: word, + feed_target_names[1]: pred, + feed_target_names[2]: ctx_n2, + feed_target_names[3]: ctx_n1, + feed_target_names[4]: ctx_0, + feed_target_names[5]: ctx_p1, + feed_target_names[6]: ctx_p2, + feed_target_names[7]: mark + }, + fetch_list=fetch_targets, + return_numpy=False) print(results[0].lod()) np_data = np.array(results[0]) print("Inference Shape: ", np_data.shape)