Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d9a52223
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9a52223
编写于
4月 10, 2018
作者:
J
jshower
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code style
上级
9fe938cb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
34 addition
and
33 deletion
+34
-33
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+34
-33
未找到文件。
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
d9a52223
...
...
@@ -70,14 +70,15 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
]
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
hidden_0_layers
=
[
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
]
hidden_0
=
fluid
.
layers
.
sums
(
input
=
hidden_0_layers
)
...
...
@@ -163,8 +164,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
# TODO(qiao)
...
...
@@ -189,8 +189,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
num_chunk_types
=
int
(
math
.
ceil
((
label_dict_len
-
1
)
/
2.0
)))
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
...
@@ -223,24 +222,25 @@ def train(use_cuda, save_dirname=None, is_local=True):
exe
)
if
batch_id
%
10
==
0
:
print
(
"avg_cost:"
+
str
(
cost
)
+
" precision:"
+
str
(
precision
)
+
" recall:"
+
str
(
recall
)
+
" f1_score
:"
+
str
(
f1_score
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall
:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
print
(
"avg_cost:"
+
str
(
cost
)
+
" precision
:"
+
str
(
precision
)
+
" recall:"
+
str
(
recall
)
+
" f1_score:"
+
str
(
f1_score
)
+
" pass_precision
:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
(
(
time
.
time
(
)
-
start_time
)
/
batch_id
))
print
(
"second per batch: "
+
str
(
(
time
.
time
(
)
-
start_time
)
/
batch_id
))
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.05
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
'ctx_p2_data'
,
'mark_data'
],
[
feature_out
],
exe
)
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
'ctx_p2_data'
,
'mark_data'
],
[
feature_out
],
exe
)
return
batch_id
=
batch_id
+
1
...
...
@@ -320,19 +320,20 @@ def infer(use_cuda, save_dirname=None):
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
7
]:
mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
7
]:
mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录