Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
cfb3699c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cfb3699c
编写于
6月 07, 2022
作者:
S
shangliang Xu
提交者:
GitHub
6月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[TIPC] add serving cpp infer, test=document_fix (#6145)
上级
405a9539
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
898 addition
and
24 deletion
+898
-24
deploy/serving/cpp/build_server.sh
deploy/serving/cpp/build_server.sh
+70
-0
deploy/serving/cpp/preprocess/ppyoloe_op.cpp
deploy/serving/cpp/preprocess/ppyoloe_op.cpp
+258
-0
deploy/serving/cpp/preprocess/ppyoloe_op.h
deploy/serving/cpp/preprocess/ppyoloe_op.h
+70
-0
deploy/serving/cpp/preprocess/serving_client_conf.prototxt
deploy/serving/cpp/preprocess/serving_client_conf.prototxt
+20
-0
deploy/serving/cpp/preprocess/yolov3_op.cpp
deploy/serving/cpp/preprocess/yolov3_op.cpp
+280
-0
deploy/serving/cpp/preprocess/yolov3_op.h
deploy/serving/cpp/preprocess/yolov3_op.h
+69
-0
deploy/serving/cpp/serving_client.py
deploy/serving/cpp/serving_client.py
+118
-0
deploy/serving/python/pipeline_http_client.py
deploy/serving/python/pipeline_http_client.py
+3
-15
deploy/serving/python/web_service.py
deploy/serving/python/web_service.py
+6
-5
deploy/third_engine/onnx/infer.py
deploy/third_engine/onnx/infer.py
+4
-4
未找到文件。
deploy/serving/cpp/build_server.sh
0 → 100644
浏览文件 @
cfb3699c
#使用镜像:
#registry.baidubce.com/paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82
#编译Serving Server:
#client和app可以直接使用release版本
#server因为加入了自定义OP,需要重新编译
apt-get update
apt
install
-y
libcurl4-openssl-dev libbz2-dev
wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar
&&
tar
xf centos_ssl.tar
&&
rm
-rf
centos_ssl.tar
&&
mv
libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k
&&
mv
libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k
&&
ln
-sf
/usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10
&&
ln
-sf
/usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10
&&
ln
-sf
/usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so
&&
ln
-sf
/usr/lib/libssl.so.10 /usr/lib/libssl.so
# 安装go依赖
rm
-rf
/usr/local/go
wget
-qO-
https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz |
tar
-xz
-C
/usr/local
export
GOROOT
=
/usr/local/go
export
GOPATH
=
/root/gopath
export
PATH
=
$PATH
:
$GOPATH
/bin:
$GOROOT
/bin
go
env
-w
GO111MODULE
=
on
go
env
-w
GOPROXY
=
https://goproxy.cn,direct
go
install
github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2
go
install
github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2
go
install
github.com/golang/protobuf/protoc-gen-go@v1.4.3
go
install
google.golang.org/grpc@v1.33.0
go
env
-w
GO111MODULE
=
auto
# 下载opencv库
wget https://paddle-qa.bj.bcebos.com/PaddleServing/opencv3.tar.gz
&&
tar
-xvf
opencv3.tar.gz
&&
rm
-rf
opencv3.tar.gz
export
OPENCV_DIR
=
$PWD
/opencv3
# clone Serving
git clone https://github.com/PaddlePaddle/Serving.git
-b
develop
--depth
=
1
cd
Serving
export
Serving_repo_path
=
$PWD
git submodule update
--init
--recursive
python
-m
pip
install
-r
python/requirements.txt
# set env
export
PYTHON_INCLUDE_DIR
=
$(
python
-c
"from distutils.sysconfig import get_python_inc; print(get_python_inc())"
)
export
PYTHON_LIBRARIES
=
$(
python
-c
"import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))"
)
export
PYTHON_EXECUTABLE
=
`
which python
`
export
CUDA_PATH
=
'/usr/local/cuda'
export
CUDNN_LIBRARY
=
'/usr/local/cuda/lib64/'
export
CUDA_CUDART_LIBRARY
=
'/usr/local/cuda/lib64/'
export
TENSORRT_LIBRARY_PATH
=
'/usr/local/TensorRT6-cuda10.1-cudnn7/targets/x86_64-linux-gnu/'
# cp 自定义OP代码
\c
p ../deploy/serving/cpp/preprocess/ppyoloe_op.
*
${
Serving_repo_path
}
/core/general-server/op
\c
p ../deploy/serving/cpp/preprocess/yolov3_op.
*
${
Serving_repo_path
}
/core/general-server/op
# 编译Server, export SERVING_BIN
mkdir
server-build-gpu-opencv
&&
cd
server-build-gpu-opencv
cmake
-DPYTHON_INCLUDE_DIR
=
$PYTHON_INCLUDE_DIR
\
-DPYTHON_LIBRARIES
=
$PYTHON_LIBRARIES
\
-DPYTHON_EXECUTABLE
=
$PYTHON_EXECUTABLE
\
-DCUDA_TOOLKIT_ROOT_DIR
=
${
CUDA_PATH
}
\
-DCUDNN_LIBRARY
=
${
CUDNN_LIBRARY
}
\
-DCUDA_CUDART_LIBRARY
=
${
CUDA_CUDART_LIBRARY
}
\
-DTENSORRT_ROOT
=
${
TENSORRT_LIBRARY_PATH
}
\
-DOPENCV_DIR
=
${
OPENCV_DIR
}
\
-DWITH_OPENCV
=
ON
\
-DSERVER
=
ON
\
-DWITH_GPU
=
ON ..
make
-j32
python
-m
pip
install
python/dist/paddle
*
export
SERVING_BIN
=
$PWD
/core/general-server/serving
cd
../../
deploy/serving/cpp/preprocess/ppyoloe_op.cpp
0 → 100644
浏览文件 @
cfb3699c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/ppyoloe_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
int
PPYOLOEOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
output_blob
->
_batch_size
=
batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
// only support string type
char
*
total_input_ptr
=
static_cast
<
char
*>
(
in
->
at
(
0
).
data
.
data
());
std
::
string
base64str
=
total_input_ptr
;
cv
::
Mat
img
=
Base2Mat
(
base64str
);
cv
::
cvtColor
(
img
,
img
,
cv
::
COLOR_BGR2RGB
);
// preprocess
std
::
vector
<
float
>
input
(
1
*
3
*
im_shape_h
*
im_shape_w
,
0.0
f
);
preprocess_det
(
img
,
input
.
data
(),
scale_factor_h
,
scale_factor_w
,
im_shape_h
,
im_shape_w
,
mean_
,
scale_
,
is_scale_
);
// create real_in
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr,error"
;
return
-
1
;
}
int
in_num
=
0
;
size_t
databuf_size
=
0
;
void
*
databuf_data
=
NULL
;
char
*
databuf_char
=
NULL
;
// image
in_num
=
1
*
3
*
im_shape_h
*
im_shape_w
;
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
input
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in
;
tensor_in
.
name
=
"image"
;
tensor_in
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in
.
shape
=
{
1
,
3
,
im_shape_h
,
im_shape_w
};
tensor_in
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in
.
data
=
paddleBuf
;
real_in
->
push_back
(
tensor_in
);
// scale_factor
std
::
vector
<
float
>
scale_factor
{
scale_factor_h
,
scale_factor_w
};
databuf_size
=
2
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
scale_factor
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_2
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_2
;
tensor_in_2
.
name
=
"scale_factor"
;
tensor_in_2
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_2
.
shape
=
{
1
,
2
};
tensor_in_2
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_2
.
data
=
paddleBuf_2
;
real_in
->
push_back
(
tensor_in_2
);
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
void
PPYOLOEOp
::
preprocess_det
(
const
cv
::
Mat
&
img
,
float
*
data
,
float
&
scale_factor_h
,
float
&
scale_factor_w
,
int
im_shape_h
,
int
im_shape_w
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
)
{
// scale_factor
scale_factor_h
=
static_cast
<
float
>
(
im_shape_h
)
/
static_cast
<
float
>
(
img
.
rows
);
scale_factor_w
=
static_cast
<
float
>
(
im_shape_w
)
/
static_cast
<
float
>
(
img
.
cols
);
// Resize
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
im_shape_w
,
im_shape_h
),
0
,
0
,
2
);
// Normalize
double
e
=
1.0
;
if
(
is_scale
)
{
e
/=
255.0
;
}
cv
::
Mat
img_fp
;
(
resize_img
).
convertTo
(
img_fp
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im_shape_h
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im_shape_w
;
w
++
)
{
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean
[
0
])
/
scale
[
0
];
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean
[
1
])
/
scale
[
1
];
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean
[
2
])
/
scale
[
2
];
}
}
// Permute
int
rh
=
img_fp
.
rows
;
int
rw
=
img_fp
.
cols
;
int
rc
=
img_fp
.
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
img_fp
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
i
*
rh
*
rw
),
i
);
}
}
cv
::
Mat
PPYOLOEOp
::
Base2Mat
(
std
::
string
&
base64_data
)
{
cv
::
Mat
img
;
std
::
string
s_mat
;
s_mat
=
base64Decode
(
base64_data
.
data
(),
base64_data
.
size
());
std
::
vector
<
char
>
base64_img
(
s_mat
.
begin
(),
s_mat
.
end
());
img
=
cv
::
imdecode
(
base64_img
,
cv
::
IMREAD_COLOR
);
// CV_LOAD_IMAGE_COLOR
return
img
;
}
std
::
string
PPYOLOEOp
::
base64Decode
(
const
char
*
Data
,
int
DataByte
)
{
const
char
DecodeTable
[]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
62
,
// '+'
0
,
0
,
0
,
63
,
// '/'
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
// '0'-'9'
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
// 'A'-'Z'
0
,
0
,
0
,
0
,
0
,
0
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
// 'a'-'z'
};
std
::
string
strDecode
;
int
nValue
;
int
i
=
0
;
while
(
i
<
DataByte
)
{
if
(
*
Data
!=
'\r'
&&
*
Data
!=
'\n'
)
{
nValue
=
DecodeTable
[
*
Data
++
]
<<
18
;
nValue
+=
DecodeTable
[
*
Data
++
]
<<
12
;
strDecode
+=
(
nValue
&
0x00FF0000
)
>>
16
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
]
<<
6
;
strDecode
+=
(
nValue
&
0x0000FF00
)
>>
8
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
];
strDecode
+=
nValue
&
0x000000FF
;
}
}
i
+=
4
;
}
else
// 回车换行,跳过
{
Data
++
;
i
++
;
}
}
return
strDecode
;
}
DEFINE_OP
(
PPYOLOEOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
deploy/serving/cpp/preprocess/ppyoloe_op.h
0 → 100644
浏览文件 @
cfb3699c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
PPYOLOEOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
PPYOLOEOp
);
int
inference
();
private:
// ppyoloe, picodet preprocess
std
::
vector
<
float
>
mean_
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
scale_
=
{
0.229
f
,
0.224
f
,
0.225
f
};
bool
is_scale_
=
true
;
int
im_shape_h
=
640
;
int
im_shape_w
=
640
;
float
scale_factor_h
=
1.0
f
;
float
scale_factor_w
=
1.0
f
;
void
preprocess_det
(
const
cv
::
Mat
&
img
,
float
*
data
,
float
&
scale_factor_h
,
float
&
scale_factor_w
,
int
im_shape_h
,
int
im_shape_w
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
);
// read pics
cv
::
Mat
Base2Mat
(
std
::
string
&
base64_data
);
std
::
string
base64Decode
(
const
char
*
Data
,
int
DataByte
);
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
deploy/serving/cpp/preprocess/serving_client_conf.prototxt
0 → 100644
浏览文件 @
cfb3699c
feed_var {
name: "input"
alias_name: "input"
is_lod_tensor: false
feed_type: 20
shape: 1
}
fetch_var {
name: "multiclass_nms3_0.tmp_0"
alias_name: "multiclass_nms3_0.tmp_0"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
fetch_var {
name: "multiclass_nms3_0.tmp_2"
alias_name: "multiclass_nms3_0.tmp_2"
is_lod_tensor: false
fetch_type: 2
}
\ No newline at end of file
deploy/serving/cpp/preprocess/yolov3_op.cpp
0 → 100644
浏览文件 @
cfb3699c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/yolov3_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
int
YOLOv3Op
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
output_blob
->
_batch_size
=
batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
// only support string type
char
*
total_input_ptr
=
static_cast
<
char
*>
(
in
->
at
(
0
).
data
.
data
());
std
::
string
base64str
=
total_input_ptr
;
cv
::
Mat
img
=
Base2Mat
(
base64str
);
cv
::
cvtColor
(
img
,
img
,
cv
::
COLOR_BGR2RGB
);
// preprocess
std
::
vector
<
float
>
input
(
1
*
3
*
im_shape_h
*
im_shape_w
,
0.0
f
);
preprocess_det
(
img
,
input
.
data
(),
scale_factor_h
,
scale_factor_w
,
im_shape_h
,
im_shape_w
,
mean_
,
scale_
,
is_scale_
);
// create real_in
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr,error"
;
return
-
1
;
}
int
in_num
=
0
;
size_t
databuf_size
=
0
;
void
*
databuf_data
=
NULL
;
char
*
databuf_char
=
NULL
;
// im_shape
std
::
vector
<
float
>
im_shape
{
static_cast
<
float
>
(
im_shape_h
),
static_cast
<
float
>
(
im_shape_w
)};
databuf_size
=
2
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
im_shape
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_0
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_0
;
tensor_in_0
.
name
=
"im_shape"
;
tensor_in_0
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_0
.
shape
=
{
1
,
2
};
tensor_in_0
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_0
.
data
=
paddleBuf_0
;
real_in
->
push_back
(
tensor_in_0
);
// image
in_num
=
1
*
3
*
im_shape_h
*
im_shape_w
;
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
input
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_1
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_1
;
tensor_in_1
.
name
=
"image"
;
tensor_in_1
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_1
.
shape
=
{
1
,
3
,
im_shape_h
,
im_shape_w
};
tensor_in_1
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_1
.
data
=
paddleBuf_1
;
real_in
->
push_back
(
tensor_in_1
);
// scale_factor
std
::
vector
<
float
>
scale_factor
{
scale_factor_h
,
scale_factor_w
};
databuf_size
=
2
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
scale_factor
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_2
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_2
;
tensor_in_2
.
name
=
"scale_factor"
;
tensor_in_2
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_2
.
shape
=
{
1
,
2
};
tensor_in_2
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_2
.
data
=
paddleBuf_2
;
real_in
->
push_back
(
tensor_in_2
);
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
void
YOLOv3Op
::
preprocess_det
(
const
cv
::
Mat
&
img
,
float
*
data
,
float
&
scale_factor_h
,
float
&
scale_factor_w
,
int
im_shape_h
,
int
im_shape_w
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
)
{
// scale_factor
scale_factor_h
=
static_cast
<
float
>
(
im_shape_h
)
/
static_cast
<
float
>
(
img
.
rows
);
scale_factor_w
=
static_cast
<
float
>
(
im_shape_w
)
/
static_cast
<
float
>
(
img
.
cols
);
// Resize
cv
::
Mat
resize_img
;
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
im_shape_w
,
im_shape_h
),
0
,
0
,
2
);
// Normalize
double
e
=
1.0
;
if
(
is_scale
)
{
e
/=
255.0
;
}
cv
::
Mat
img_fp
;
(
resize_img
).
convertTo
(
img_fp
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im_shape_h
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im_shape_w
;
w
++
)
{
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean
[
0
])
/
scale
[
0
];
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean
[
1
])
/
scale
[
1
];
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
img_fp
.
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean
[
2
])
/
scale
[
2
];
}
}
// Permute
int
rh
=
img_fp
.
rows
;
int
rw
=
img_fp
.
cols
;
int
rc
=
img_fp
.
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
img_fp
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
i
*
rh
*
rw
),
i
);
}
}
cv
::
Mat
YOLOv3Op
::
Base2Mat
(
std
::
string
&
base64_data
)
{
cv
::
Mat
img
;
std
::
string
s_mat
;
s_mat
=
base64Decode
(
base64_data
.
data
(),
base64_data
.
size
());
std
::
vector
<
char
>
base64_img
(
s_mat
.
begin
(),
s_mat
.
end
());
img
=
cv
::
imdecode
(
base64_img
,
cv
::
IMREAD_COLOR
);
// CV_LOAD_IMAGE_COLOR
return
img
;
}
std
::
string
YOLOv3Op
::
base64Decode
(
const
char
*
Data
,
int
DataByte
)
{
const
char
DecodeTable
[]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
62
,
// '+'
0
,
0
,
0
,
63
,
// '/'
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
// '0'-'9'
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
// 'A'-'Z'
0
,
0
,
0
,
0
,
0
,
0
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
// 'a'-'z'
};
std
::
string
strDecode
;
int
nValue
;
int
i
=
0
;
while
(
i
<
DataByte
)
{
if
(
*
Data
!=
'\r'
&&
*
Data
!=
'\n'
)
{
nValue
=
DecodeTable
[
*
Data
++
]
<<
18
;
nValue
+=
DecodeTable
[
*
Data
++
]
<<
12
;
strDecode
+=
(
nValue
&
0x00FF0000
)
>>
16
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
]
<<
6
;
strDecode
+=
(
nValue
&
0x0000FF00
)
>>
8
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
];
strDecode
+=
nValue
&
0x000000FF
;
}
}
i
+=
4
;
}
else
// 回车换行,跳过
{
Data
++
;
i
++
;
}
}
return
strDecode
;
}
DEFINE_OP
(
YOLOv3Op
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
deploy/serving/cpp/preprocess/yolov3_op.h
0 → 100644
浏览文件 @
cfb3699c
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
YOLOv3Op
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
YOLOv3Op
);
int
inference
();
private:
// yolov3, ppyolo preprocess
std
::
vector
<
float
>
mean_
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
scale_
=
{
0.229
f
,
0.224
f
,
0.225
f
};
bool
is_scale_
=
true
;
int
im_shape_h
=
608
;
int
im_shape_w
=
608
;
float
scale_factor_h
=
1.0
f
;
float
scale_factor_w
=
1.0
f
;
void
preprocess_det
(
const
cv
::
Mat
&
img
,
float
*
data
,
float
&
scale_factor_h
,
float
&
scale_factor_w
,
int
im_shape_h
,
int
im_shape_w
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
scale
,
const
bool
is_scale
);
// read pics
cv
::
Mat
Base2Mat
(
std
::
string
&
base64_data
);
std
::
string
base64Decode
(
const
char
*
Data
,
int
DataByte
);
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
deploy/serving/cpp/serving_client.py
0 → 100644
浏览文件 @
cfb3699c
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
base64
import
glob
import
os
from
paddle_serving_client
import
Client
from
paddle_serving_client.proto
import
general_model_config_pb2
as
m_config
import
google.protobuf.text_format
import
argparse
parser
=
argparse
.
ArgumentParser
(
description
=
"args for paddleserving"
)
parser
.
add_argument
(
"--serving_client"
,
type
=
str
,
help
=
"the directory of serving_client"
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
parser
.
add_argument
(
"--image_file"
,
type
=
str
)
parser
.
add_argument
(
"--threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
args
=
parser
.
parse_args
()
def
get_test_images
(
infer_dir
,
infer_img
):
"""
Get image path list in TEST mode
"""
assert
infer_img
is
not
None
or
infer_dir
is
not
None
,
\
"--image_file or --image_dir should be set"
assert
infer_img
is
None
or
os
.
path
.
isfile
(
infer_img
),
\
"{} is not a file"
.
format
(
infer_img
)
assert
infer_dir
is
None
or
os
.
path
.
isdir
(
infer_dir
),
\
"{} is not a directory"
.
format
(
infer_dir
)
# infer_img has a higher priority
if
infer_img
and
os
.
path
.
isfile
(
infer_img
):
return
[
infer_img
]
images
=
set
()
infer_dir
=
os
.
path
.
abspath
(
infer_dir
)
assert
os
.
path
.
isdir
(
infer_dir
),
\
"infer_dir {} is not a directory"
.
format
(
infer_dir
)
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
ext
in
exts
:
images
.
update
(
glob
.
glob
(
'{}/*.{}'
.
format
(
infer_dir
,
ext
)))
images
=
list
(
images
)
assert
len
(
images
)
>
0
,
"no image found in {}"
.
format
(
infer_dir
)
print
(
"Found {} inference images in total."
.
format
(
len
(
images
)))
return
images
def
postprocess
(
fetch_dict
,
draw_threshold
=
0.5
):
bboxes
=
fetch_dict
[
"multiclass_nms3_0.tmp_0"
]
bboxes_num
=
fetch_dict
[
"multiclass_nms3_0.tmp_2"
]
for
bbox
in
bboxes
:
if
bbox
[
0
]
>
-
1
and
bbox
[
1
]
>
draw_threshold
:
print
(
f
"
{
int
(
bbox
[
0
])
}
{
bbox
[
1
]
}
"
f
"
{
bbox
[
2
]
}
{
bbox
[
3
]
}
{
bbox
[
4
]
}
{
bbox
[
5
]
}
"
)
return
fetch_dict
def
get_model_vars
(
client_config_dir
):
# read original serving_client_conf.prototxt
client_config_file
=
os
.
path
.
join
(
client_config_dir
,
"serving_client_conf.prototxt"
)
with
open
(
client_config_file
,
'r'
)
as
f
:
model_var
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
m_config
.
GeneralModelConfig
())
# modify feed_var to run core/general-server/op/
[
model_var
.
feed_var
.
pop
()
for
_
in
range
(
len
(
model_var
.
feed_var
))]
feed_var
=
m_config
.
FeedVar
()
feed_var
.
name
=
"input"
feed_var
.
alias_name
=
"input"
feed_var
.
is_lod_tensor
=
False
feed_var
.
feed_type
=
20
feed_var
.
shape
.
extend
([
1
])
model_var
.
feed_var
.
extend
([
feed_var
])
with
open
(
os
.
path
.
join
(
client_config_dir
,
"serving_client_conf_cpp.prototxt"
),
"w"
)
as
f
:
f
.
write
(
str
(
model_var
))
# get feed_vars/fetch_vars
feed_vars
=
[
var
.
name
for
var
in
model_var
.
feed_var
]
fetch_vars
=
[
var
.
name
for
var
in
model_var
.
fetch_var
]
return
feed_vars
,
fetch_vars
if
__name__
==
'__main__'
:
url
=
"127.0.0.1:9997"
logid
=
10000
img_list
=
get_test_images
(
args
.
image_dir
,
args
.
image_file
)
feed_vars
,
fetch_vars
=
get_model_vars
(
args
.
serving_client
)
client
=
Client
()
client
.
load_client_config
(
os
.
path
.
join
(
args
.
serving_client
,
"serving_client_conf_cpp.prototxt"
))
client
.
connect
([
url
])
for
img_file
in
img_list
:
with
open
(
img_file
,
'rb'
)
as
file
:
image_data
=
file
.
read
()
image
=
base64
.
b64encode
(
image_data
).
decode
(
'utf8'
)
fetch_dict
=
client
.
predict
(
feed
=
{
feed_vars
[
0
]:
image
},
fetch
=
fetch_vars
)
result
=
postprocess
(
fetch_dict
,
args
.
threshold
)
deploy/serving/python/pipeline_http_client.py
浏览文件 @
cfb3699c
...
...
@@ -56,19 +56,6 @@ def get_test_images(infer_dir, infer_img):
return
images
def
cv2_to_base64
(
image
):
"""cv2_to_base64
Convert an numpy array to a base64 object.
Args:
image: Input array.
Returns: Base64 output of the input.
"""
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
if
__name__
==
"__main__"
:
url
=
"http://127.0.0.1:18093/ppdet/prediction"
logid
=
10000
...
...
@@ -76,9 +63,10 @@ if __name__ == "__main__":
for
img_file
in
img_list
:
with
open
(
img_file
,
'rb'
)
as
file
:
image_data
1
=
file
.
read
()
image_data
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
# base64 encode
image
=
base64
.
b64encode
(
image_data
).
decode
(
'utf8'
)
data
=
{
"key"
:
[
"image_0"
],
"value"
:
[
image
],
"logid"
:
logid
}
# send requests
...
...
deploy/serving/python/web_service.py
浏览文件 @
cfb3699c
...
...
@@ -207,7 +207,7 @@ class DetectorOp(Op):
result
=
[]
for
line
in
bbox
:
if
line
[
0
]
>
-
1
and
line
[
1
]
>
draw_threshold
:
result
.
append
(
f
"
{
label_list
[
int
(
line
[
0
])]
}
{
line
[
1
]
}
"
result
.
append
(
f
"
{
int
(
line
[
0
])
}
{
line
[
1
]
}
"
f
"
{
line
[
2
]
}
{
line
[
3
]
}
{
line
[
4
]
}
{
line
[
5
]
}
"
)
return
result
...
...
@@ -222,10 +222,11 @@ def get_model_vars(model_dir, service_config):
# rewrite model_config
service_config
[
'op'
][
'ppdet'
][
'local_service_conf'
][
'model_config'
]
=
serving_server_dir
f
=
open
(
os
.
path
.
join
(
serving_server_dir
,
"serving_server_conf.prototxt"
),
'r'
)
model_var
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
m_config
.
GeneralModelConfig
())
serving_server_conf
=
os
.
path
.
join
(
serving_server_dir
,
"serving_server_conf.prototxt"
)
with
open
(
serving_server_conf
,
'r'
)
as
f
:
model_var
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
m_config
.
GeneralModelConfig
())
feed_vars
=
[
var
.
name
for
var
in
model_var
.
feed_var
]
fetch_vars
=
[
var
.
name
for
var
in
model_var
.
fetch_var
]
return
feed_vars
,
fetch_vars
...
...
deploy/third_engine/onnx/infer.py
浏览文件 @
cfb3699c
...
...
@@ -45,7 +45,7 @@ SUPPORT_MODELS = {
}
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"-
c"
,
"--confi
g"
,
type
=
str
,
help
=
"infer_cfg.yml"
)
parser
.
add_argument
(
"-
-infer_cf
g"
,
type
=
str
,
help
=
"infer_cfg.yml"
)
parser
.
add_argument
(
'--onnx_file'
,
type
=
str
,
default
=
"model.onnx"
,
help
=
"onnx model file path"
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
...
...
@@ -86,7 +86,7 @@ def get_test_images(infer_dir, infer_img):
class
PredictConfig
(
object
):
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root
path of infer_cfg.yml
infer_config (str):
path of infer_cfg.yml
"""
def
__init__
(
self
,
infer_config
):
...
...
@@ -145,7 +145,7 @@ def predict_image(infer_config, predictor, img_list):
bboxes
=
np
.
array
(
outputs
[
0
])
for
bbox
in
bboxes
:
if
bbox
[
0
]
>
-
1
and
bbox
[
1
]
>
infer_config
.
draw_threshold
:
print
(
f
"
{
in
fer_config
.
label_list
[
int
(
bbox
[
0
])]
}
{
bbox
[
1
]
}
"
print
(
f
"
{
in
t
(
bbox
[
0
])
}
{
bbox
[
1
]
}
"
f
"
{
bbox
[
2
]
}
{
bbox
[
3
]
}
{
bbox
[
4
]
}
{
bbox
[
5
]
}
"
)
...
...
@@ -156,6 +156,6 @@ if __name__ == '__main__':
# load predictor
predictor
=
InferenceSession
(
FLAGS
.
onnx_file
)
# load infer config
infer_config
=
PredictConfig
(
FLAGS
.
confi
g
)
infer_config
=
PredictConfig
(
FLAGS
.
infer_cf
g
)
predict_image
(
infer_config
,
predictor
,
img_list
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录