Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a9f5f822
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a9f5f822
编写于
10月 17, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use binary search. test=develop
上级
38612695
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
335 addition
and
171 deletion
+335
-171
paddle/fluid/operators/momentum_op.cc
paddle/fluid/operators/momentum_op.cc
+8
-3
paddle/fluid/operators/momentum_op.cu
paddle/fluid/operators/momentum_op.cu
+3
-121
paddle/fluid/operators/momentum_op.h
paddle/fluid/operators/momentum_op.h
+324
-47
未找到文件。
paddle/fluid/operators/momentum_op.cc
浏览文件 @
a9f5f822
...
...
@@ -74,9 +74,13 @@ class MomentumOpInferVarType : public framework::VarTypeInference {
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
}
else
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
else
{
PADDLE_THROW
(
"Only support LodTensor and SelectedRows, Unexpected Input Type."
);
}
}
}
...
...
@@ -135,5 +139,6 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
momentum
,
ops
::
MomentumOp
,
ops
::
MomentumOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
MomentumOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
momentum
,
ops
::
MomentumOpKernel
<
float
>
,
ops
::
MomentumOpKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
momentum
,
ops
::
MomentumOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MomentumOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/momentum_op.cu
浏览文件 @
a9f5f822
...
...
@@ -15,125 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/momentum_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
MomentumKernel
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
learning_rate
,
const
T
mu
,
const
int64_t
num
,
bool
use_nesterov
,
T
*
p_out
,
T
*
v_out
)
{
T
lr
=
learning_rate
[
0
];
if
(
use_nesterov
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
g_val
=
g
[
i
];
T
v_new
=
v
[
i
]
*
mu
+
g_val
;
v_out
[
i
]
=
v_new
;
p_out
[
i
]
=
p
[
i
]
-
(
g_val
+
v_new
*
mu
)
*
lr
;
}
}
else
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
v_new
=
v
[
i
]
*
mu
+
g
[
i
];
v_out
[
i
]
=
v_new
;
p_out
[
i
]
=
p
[
i
]
-
lr
*
v_new
;
}
}
}
template
<
typename
T
>
__global__
void
SparseMomentumKernel
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
lr
,
const
T
mu
,
const
int64_t
*
grad_rows
,
const
size_t
grad_row_numel
,
const
size_t
grad_row_size
,
const
T
use_nesterov
,
T
*
p_out
,
T
*
v_out
)
{
for
(
int
i
=
blockIdx
.
x
;
i
<
grad_row_size
;
i
+=
gridDim
.
x
)
{
for
(
int
j
=
threadIdx
.
x
;
j
<
grad_row_numel
;
j
+=
blockDim
.
x
)
{
size_t
p_i
=
grad_rows
[
i
]
*
grad_row_numel
+
j
;
size_t
g_i
=
i
*
grad_row_numel
+
j
;
v_out
[
g_i
]
=
v
[
g_i
]
*
mu
+
g
[
g_i
];
if
(
use_nesterov
)
{
p_out
[
p_i
]
=
p
[
p_i
]
-
(
g
[
g_i
]
+
v_out
[
g_i
]
*
mu
)
*
lr
[
0
];
}
else
{
p_out
[
p_i
]
=
p
[
p_i
]
-
v_out
[
g_i
]
*
lr
[
0
];
}
}
}
}
template
<
typename
T
>
class
MomentumOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
bool
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
velocity_var
=
ctx
.
InputVar
(
"Velocity"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
LoDTensor
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
T
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
v_out
=
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
p
=
param
->
data
<
T
>
();
auto
*
v
=
velocity
->
data
<
T
>
();
auto
*
g
=
grad
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
const
int
kThreadPerBlock
=
256
;
int
grid
=
(
param
->
numel
()
+
kThreadPerBlock
-
1
)
/
kThreadPerBlock
;
MomentumKernel
<
T
><<<
grid
,
kThreadPerBlock
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
param
->
numel
(),
use_nesterov
,
p_out
,
v_out
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// sparse update embedding with selectedrows
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
SelectedRows
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"VelocityOut"
);
// sparse update maybe empty.
if
(
grad
->
rows
().
size
()
==
0
)
{
return
;
}
PADDLE_ENFORCE
(
grad
->
height
()
==
velocity
->
height
(),
"Unmatched gradient and velocity."
);
auto
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
v_out
=
velocity_out
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
p
=
param
->
data
<
T
>
();
auto
*
g
=
grad
->
value
().
data
<
T
>
();
auto
*
v
=
velocity
->
value
().
data
<
T
>
();
size_t
grad_row_numel
=
grad
->
value
().
numel
()
/
grad
->
rows
().
size
();
size_t
grad_row_size
=
grad
->
rows
().
size
();
framework
::
Vector
<
int64_t
>
rows
(
grad
->
rows
());
const
int
kThreadPerBlock
=
256
;
int
grid
=
(
param
->
numel
()
+
kThreadPerBlock
-
1
)
/
kThreadPerBlock
;
SparseMomentumKernel
<
T
><<<
grid
,
kThreadPerBlock
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
rows
.
CUDAData
(
ctx
.
GetPlace
()),
grad_row_numel
,
grad
->
rows
().
size
(),
use_nesterov
,
p_out
,
v_out
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
momentum
,
ops
::
MomentumOpCUDAKernel
<
float
>
,
ops
::
MomentumOpCUDAKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
momentum
,
ops
::
MomentumOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MomentumOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/momentum_op.h
浏览文件 @
a9f5f822
...
...
@@ -15,11 +15,265 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
SelectedRows
;
struct
NoNesterov
;
struct
UseNesterov
;
template
<
typename
T
>
class
CPUDenseMomentumFunctor
{
private:
const
Tensor
*
param
;
const
Tensor
*
grad
;
const
Tensor
*
velocity
;
const
Tensor
*
learning_rate
;
const
T
mu
;
const
T
use_nesterov
;
Tensor
*
param_out
;
Tensor
*
velocity_out
;
public:
CPUDenseMomentumFunctor
(
const
Tensor
*
param
,
const
Tensor
*
grad
,
const
Tensor
*
velocity
,
const
Tensor
*
learning_rate
,
const
T
mu
,
const
bool
use_nesterov
,
Tensor
*
param_out
,
Tensor
*
velocity_out
)
:
param
(
param
),
grad
(
grad
),
velocity
(
velocity
),
learning_rate
(
learning_rate
),
mu
(
mu
),
use_nesterov
(
use_nesterov
),
param_out
(
param_out
),
velocity_out
(
velocity_out
)
{}
inline
void
operator
()()
{
auto
p_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
v_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity_out
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
v
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
v_out
=
v
*
mu
+
g
;
if
(
use_nesterov
)
{
p_out
=
p
-
(
g
+
v_out
*
mu
)
*
lr
[
0
];
}
else
{
p_out
=
p
-
lr
[
0
]
*
v_out
;
}
}
};
template
<
typename
T
,
typename
UpdateMethod
>
class
DenseMomentumFunctor
;
// NOTE(dzh) for performance.
// avoid if/else in inside kernel, implement GPU UseNesterov/NoNesterov as two
// functor.
template
<
typename
T
>
class
DenseMomentumFunctor
<
T
,
UseNesterov
>
{
private:
const
T
*
p_
;
const
T
*
g_
;
const
T
*
v_
;
const
T
*
lr_
;
const
T
mu_
;
const
int64_t
num_
;
T
*
p_out_
;
T
*
v_out_
;
public:
DenseMomentumFunctor
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
learning_rate
,
const
T
mu
,
const
int64_t
num
,
T
*
p_out
,
T
*
v_out
)
:
p_
(
p
),
g_
(
g
),
v_
(
v
),
lr_
(
learning_rate
),
mu_
(
mu
),
num_
(
num
),
p_out_
(
p_out
),
v_out_
(
v_out
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
// put memory access in register
const
T
p
=
p_
[
i
];
const
T
g
=
g_
[
i
];
const
T
lr
=
lr_
[
0
];
const
T
v
=
v_
[
i
];
T
v_out
=
v
*
mu_
+
g
;
T
p_out
=
p
-
(
g
+
v_out
*
mu_
)
*
lr
;
// write reigster to memory
v_out_
[
i
]
=
v_out
;
p_out_
[
i
]
=
p_out
;
}
};
template
<
typename
T
>
class
DenseMomentumFunctor
<
T
,
NoNesterov
>
{
private:
const
T
*
p_
;
const
T
*
g_
;
const
T
*
v_
;
const
T
*
lr_
;
const
T
mu_
;
const
int64_t
num_
;
T
*
p_out_
;
T
*
v_out_
;
public:
DenseMomentumFunctor
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
learning_rate
,
const
T
mu
,
const
int64_t
num
,
T
*
p_out
,
T
*
v_out
)
:
p_
(
p
),
g_
(
g
),
v_
(
v
),
lr_
(
learning_rate
),
mu_
(
mu
),
num_
(
num
),
p_out_
(
p_out
),
v_out_
(
v_out
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
// put memory access in register
const
T
p
=
p_
[
i
];
const
T
g
=
g_
[
i
];
const
T
lr
=
lr_
[
0
];
const
T
v
=
v_
[
i
];
T
v_out
=
v
*
mu_
+
g
;
T
p_out
=
p
-
lr
*
v_out
;
// write reigster to memory
v_out_
[
i
]
=
v_out
;
p_out_
[
i
]
=
p_out
;
}
};
// TODO(dzh): enhance speed use eigen
// template<typename T>
// class CPUSparseMomentumFunctor {
// private:
// const T* p_;
// const T* g_;
// const T* v_;
// const T* lr_;
// const T mu_;
// const bool use_nesterov_;
// const int64_t* rows_;
// const int64_t row_numel_;
// const int64_t row_height_;
// T* p_out_;
// T* v_out_;
// public:
// CPUSparseMomentumFunctor(const T* p, const T* g, const T* v, const T* lr,
// const T mu, const bool use_nesterov, const int64_t* rows, const int64_t
// row_numel, const int64_t row_height, T* p_out, T* v_out) :p_(p), g_(g),
// v_(v), lr_(lr), mu_(mu), rows_(rows), row_numel_(row_numel),
// row_height_(row_height), p_out_(p_out), v_out_(v_out) {}
// inline void operator()() {
// }
// };
template
<
typename
T
,
typename
UpdateMethod
>
class
SparseMomentumFunctor
;
template
<
typename
T
>
class
SparseMomentumFunctor
<
T
,
UseNesterov
>
{
private:
const
T
*
p_
;
const
T
*
g_
;
const
T
*
v_
;
const
T
*
lr_
;
const
T
mu_
;
const
int64_t
*
rows_
;
const
int64_t
row_numel_
;
const
int64_t
row_height_
;
T
*
p_out_
;
T
*
v_out_
;
public:
SparseMomentumFunctor
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
lr
,
const
T
mu
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_height
,
T
*
p_out
,
T
*
v_out
)
:
p_
(
p
),
g_
(
g
),
v_
(
v
),
lr_
(
lr
),
mu_
(
mu
),
rows_
(
rows
),
row_numel_
(
row_numel
),
row_height_
(
row_height
),
p_out_
(
p_out
),
v_out_
(
v_out
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
{
auto
row_idx
=
math
::
BinarySearch
<
int64_t
>
(
rows_
,
row_height_
,
i
/
row_numel_
);
T
g
=
row_idx
>=
0
?
g_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
// put memory access in register
const
T
p
=
p_
[
i
];
const
T
lr
=
lr_
[
0
];
const
T
v
=
v_
[
i
];
T
v_out
=
v
*
mu_
+
g
;
T
p_out
=
p
-
(
g
+
v_out
*
mu_
)
*
lr
;
// write reigster to memory
v_out_
[
i
]
=
v_out
;
p_out_
[
i
]
=
p_out
;
}
};
template
<
typename
T
>
class
SparseMomentumFunctor
<
T
,
NoNesterov
>
{
private:
const
T
*
p_
;
const
T
*
g_
;
const
T
*
v_
;
const
T
*
lr_
;
const
T
mu_
;
const
int64_t
*
rows_
;
const
int64_t
row_numel_
;
const
int64_t
row_height_
;
T
*
p_out_
;
T
*
v_out_
;
public:
SparseMomentumFunctor
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
lr
,
const
T
mu
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_height
,
T
*
p_out
,
T
*
v_out
)
:
p_
(
p
),
g_
(
g
),
v_
(
v
),
lr_
(
lr
),
mu_
(
mu
),
rows_
(
rows
),
row_numel_
(
row_numel
),
row_height_
(
row_height
),
p_out_
(
p_out
),
v_out_
(
v_out
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
{
auto
row_idx
=
math
::
BinarySearch
<
int64_t
>
(
rows_
,
row_height_
,
i
/
row_numel_
);
T
g
=
row_idx
>=
0
?
g_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
// put memory access in register
const
T
p
=
p_
[
i
];
const
T
lr
=
lr_
[
0
];
const
T
v
=
v_
[
i
];
T
v_out
=
v
*
mu_
+
g
;
T
p_out
=
p
-
v_out
*
lr
;
// write reigster to memory
v_out_
[
i
]
=
v_out
;
p_out_
[
i
]
=
p_out
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -29,65 +283,88 @@ class MomentumOpKernel : public framework::OpKernel<T> {
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
velocity_var
=
ctx
.
InputVar
(
"Velocity"
);
auto
*
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
LoDTensor
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
p_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
v_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity_out
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
v
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
v_out
=
v
*
mu
+
g
;
if
(
use_nesterov
)
{
p_out
=
p
-
(
g
+
v_out
*
mu
)
*
lr
[
0
];
}
else
{
p_out
=
p
-
lr
[
0
]
*
v_out
;
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
CPUDenseMomentumFunctor
<
T
>
functor
(
param
,
grad
,
velocity
,
learning_rate
,
mu
,
use_nesterov
,
param_out
,
velocity_out
);
functor
();
}
else
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
->
numel
());
if
(
use_nesterov
)
{
DenseMomentumFunctor
<
T
,
UseNesterov
>
functor
(
param
->
data
<
T
>
(),
grad
->
data
<
T
>
(),
velocity
->
data
<
T
>
(),
learning_rate
->
data
<
T
>
(),
mu
,
param
->
numel
(),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
for_range
(
functor
);
}
else
{
DenseMomentumFunctor
<
T
,
NoNesterov
>
functor
(
param
->
data
<
T
>
(),
grad
->
data
<
T
>
(),
velocity
->
data
<
T
>
(),
learning_rate
->
data
<
T
>
(),
mu
,
param
->
numel
(),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
for_range
(
functor
);
}
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// sparse update embedding with selectedrows
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
SelectedRows
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"VelocityOut"
);
// sparse update maybe empty.
if
(
grad
->
rows
().
size
()
==
0
)
{
VLOG
(
3
)
<<
"Grad SelectedRows contains no data!"
;
return
;
}
PADDLE_ENFORCE
(
grad
->
height
()
==
velocity
->
height
(),
"Unmatched gradient and velocity."
);
auto
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
v_out
=
velocity_out
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
p
=
param
->
data
<
T
>
();
auto
*
g
=
grad
->
value
().
data
<
T
>
();
auto
*
v
=
velocity
->
value
().
data
<
T
>
();
size_t
grad_row_numel
=
grad
->
value
().
numel
()
/
grad
->
rows
().
size
();
for
(
size_t
i
=
0
;
i
<
grad
->
rows
().
size
();
++
i
)
{
size_t
grad_row_index
=
grad
->
rows
()[
i
];
for
(
size_t
j
=
0
;
j
<
grad_row_numel
;
++
j
)
{
size_t
p_i
=
grad_row_index
*
grad_row_numel
+
j
;
size_t
g_i
=
i
*
grad_row_numel
+
j
;
v_out
[
g_i
]
=
v
[
g_i
]
*
mu
+
g
[
g_i
];
if
(
use_nesterov
)
{
p_out
[
p_i
]
=
p
[
p_i
]
-
(
g
[
g_i
]
+
v_out
[
g_i
]
*
mu
)
*
lr
[
0
];
}
else
{
p_out
[
p_i
]
=
p
[
p_i
]
-
v_out
[
g_i
]
*
lr
[
0
];
}
}
auto
*
merged_grad
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grad
,
merged_grad
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
param
->
numel
());
const
int64_t
*
rows
=
nullptr
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
merged_grad
->
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
rows
=
merged_grad
->
rows
().
data
();
}
if
(
use_nesterov
)
{
SparseMomentumFunctor
<
T
,
UseNesterov
>
functor
(
param
->
data
<
T
>
(),
merged_grad
->
value
().
data
<
T
>
(),
velocity
->
data
<
T
>
(),
learning_rate
->
data
<
T
>
(),
mu
,
rows
,
static_cast
<
int64_t
>
(
merged_grad
->
rows
().
size
()),
static_cast
<
int64_t
>
(
merged_grad
->
height
()),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
for_range
(
functor
);
}
else
{
SparseMomentumFunctor
<
T
,
NoNesterov
>
functor
(
param
->
data
<
T
>
(),
merged_grad
->
value
().
data
<
T
>
(),
velocity
->
data
<
T
>
(),
learning_rate
->
data
<
T
>
(),
mu
,
rows
,
static_cast
<
int64_t
>
(
merged_grad
->
rows
().
size
()),
static_cast
<
int64_t
>
(
merged_grad
->
height
()),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
for_range
(
functor
);
}
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录