Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
38612695
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
38612695
编写于
10月 16, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
差异文件
merge develop branch
上级
8329a1f1
fa2ab334
变更
88
展开全部
隐藏空白更改
内联
并排
Showing
88 changed file
with
2644 addition
and
958 deletion
+2644
-958
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+3
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-1
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+1
-2
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+2
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+43
-41
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+19
-25
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-4
paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.cc
+0
-78
paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass_tester.cc
...e/fluid/framework/ir/conv_bias_mkldnn_fuse_pass_tester.cc
+0
-106
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+35
-104
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+0
-32
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+0
-21
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+4
-0
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-1
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+17
-12
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+5
-0
paddle/fluid/framework/tensor_util.cc
paddle/fluid/framework/tensor_util.cc
+20
-0
paddle/fluid/framework/tensor_util_test.cc
paddle/fluid/framework/tensor_util_test.cc
+14
-0
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+1
-1
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+0
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+5
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+5
-0
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
+1
-0
paddle/fluid/inference/api/demo_ci/run.sh
paddle/fluid/inference/api/demo_ci/run.sh
+3
-5
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
+82
-0
paddle/fluid/inference/api/demo_ci/utils.h
paddle/fluid/inference/api/demo_ci/utils.h
+59
-0
paddle/fluid/inference/api/demo_ci/vis_demo.cc
paddle/fluid/inference/api/demo_ci/vis_demo.cc
+14
-91
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+4
-2
paddle/fluid/inference/tensorrt/convert/pad_op.cc
paddle/fluid/inference/tensorrt/convert/pad_op.cc
+68
-0
paddle/fluid/inference/tensorrt/convert/test_pad_op.cc
paddle/fluid/inference/tensorrt/convert/test_pad_op.cc
+52
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-1
paddle/fluid/operators/adadelta_op.cc
paddle/fluid/operators/adadelta_op.cc
+12
-0
paddle/fluid/operators/adadelta_op.h
paddle/fluid/operators/adadelta_op.h
+11
-0
paddle/fluid/operators/adagrad_op.h
paddle/fluid/operators/adagrad_op.h
+20
-13
paddle/fluid/operators/adam_op.h
paddle/fluid/operators/adam_op.h
+9
-16
paddle/fluid/operators/adamax_op.cc
paddle/fluid/operators/adamax_op.cc
+10
-0
paddle/fluid/operators/adamax_op.h
paddle/fluid/operators/adamax_op.h
+11
-0
paddle/fluid/operators/clip_by_norm_op.h
paddle/fluid/operators/clip_by_norm_op.h
+37
-3
paddle/fluid/operators/decayed_adagrad_op.cc
paddle/fluid/operators/decayed_adagrad_op.cc
+10
-0
paddle/fluid/operators/decayed_adagrad_op.h
paddle/fluid/operators/decayed_adagrad_op.h
+11
-0
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+8
-1
paddle/fluid/operators/ftrl_op.cc
paddle/fluid/operators/ftrl_op.cc
+10
-0
paddle/fluid/operators/ftrl_op.h
paddle/fluid/operators/ftrl_op.h
+11
-0
paddle/fluid/operators/isfinite_op.cc
paddle/fluid/operators/isfinite_op.cc
+3
-1
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+3
-3
paddle/fluid/operators/math/algorithm.h
paddle/fluid/operators/math/algorithm.h
+27
-17
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+210
-65
paddle/fluid/operators/math/selected_rows_functor.cc
paddle/fluid/operators/math/selected_rows_functor.cc
+70
-20
paddle/fluid/operators/math/selected_rows_functor.h
paddle/fluid/operators/math/selected_rows_functor.h
+113
-0
paddle/fluid/operators/math/selected_rows_functor_test.cc
paddle/fluid/operators/math/selected_rows_functor_test.cc
+171
-0
paddle/fluid/operators/math/sequence_pooling.cc
paddle/fluid/operators/math/sequence_pooling.cc
+18
-3
paddle/fluid/operators/momentum_op.cc
paddle/fluid/operators/momentum_op.cc
+5
-0
paddle/fluid/operators/reader/blocking_queue.h
paddle/fluid/operators/reader/blocking_queue.h
+6
-3
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
+6
-4
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
+24
-0
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+3
-2
paddle/fluid/operators/rmsprop_op.cc
paddle/fluid/operators/rmsprop_op.cc
+5
-0
paddle/fluid/operators/rmsprop_op.h
paddle/fluid/operators/rmsprop_op.h
+229
-41
paddle/fluid/operators/sequence_concat_op.cc
paddle/fluid/operators/sequence_concat_op.cc
+4
-2
paddle/fluid/operators/sequence_unpad_op.cc
paddle/fluid/operators/sequence_unpad_op.cc
+153
-0
paddle/fluid/operators/sequence_unpad_op.cu
paddle/fluid/operators/sequence_unpad_op.cu
+30
-0
paddle/fluid/operators/sequence_unpad_op.h
paddle/fluid/operators/sequence_unpad_op.h
+104
-0
paddle/fluid/operators/sgd_op.cc
paddle/fluid/operators/sgd_op.cc
+16
-13
paddle/fluid/operators/sgd_op.cu
paddle/fluid/operators/sgd_op.cu
+6
-0
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+16
-16
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+15
-5
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+5
-3
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+7
-0
paddle/fluid/platform/gpu_info.cc
paddle/fluid/platform/gpu_info.cc
+18
-0
paddle/fluid/platform/gpu_info.h
paddle/fluid/platform/gpu_info.h
+6
-0
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+47
-18
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+134
-41
paddle/fluid/train/demo/README.md
paddle/fluid/train/demo/README.md
+1
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+12
-12
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+5
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+115
-2
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+12
-5
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+1
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+12
-0
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+19
-2
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
+17
-5
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
+57
-0
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
+74
-4
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+8
-0
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
+139
-92
python/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
...on/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
+75
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+16
-11
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
38612695
...
@@ -18,7 +18,7 @@ function(copy TARGET)
...
@@ -18,7 +18,7 @@ function(copy TARGET)
set
(
oneValueArgs
""
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS DSTS DEPS
)
set
(
multiValueArgs SRCS DSTS DEPS
)
cmake_parse_arguments
(
copy_lib
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cmake_parse_arguments
(
copy_lib
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
set
(
inference_lib_dist_dep
${
TARGET
}
${
inference
_lib_dist_dep
}
PARENT_SCOPE
)
set
(
fluid_lib_dist_dep
${
TARGET
}
${
fluid
_lib_dist_dep
}
PARENT_SCOPE
)
list
(
LENGTH copy_lib_SRCS copy_lib_SRCS_len
)
list
(
LENGTH copy_lib_SRCS copy_lib_SRCS_len
)
list
(
LENGTH copy_lib_DSTS copy_lib_DSTS_len
)
list
(
LENGTH copy_lib_DSTS copy_lib_DSTS_len
)
...
@@ -185,7 +185,8 @@ copy(cmake_cache
...
@@ -185,7 +185,8 @@ copy(cmake_cache
SRCS
${
CMAKE_CURRENT_BINARY_DIR
}
/CMakeCache.txt
SRCS
${
CMAKE_CURRENT_BINARY_DIR
}
/CMakeCache.txt
DSTS
${
FLUID_INSTALL_DIR
}
)
DSTS
${
FLUID_INSTALL_DIR
}
)
add_custom_target
(
inference_lib_dist DEPENDS
${
inference_lib_dist_dep
}
)
# This command generates a complete fluid library for both train and inference
add_custom_target
(
fluid_lib_dist DEPENDS
${
fluid_lib_dist_dep
}
)
# paddle fluid version
# paddle fluid version
execute_process
(
execute_process
(
...
...
paddle/fluid/API.spec
浏览文件 @
38612695
...
@@ -75,7 +75,8 @@ paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'outp
...
@@ -75,7 +75,8 @@ paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'outp
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None))
paddle.fluid.layers.sequence_expand_as ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_expand_as ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_pad ArgSpec(args=['x', 'pad_value', 'maxlen'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_pad ArgSpec(args=['x', 'pad_value', 'maxlen', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.sequence_unpad ArgSpec(args=['x', 'length', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None))
paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None))
paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None))
...
@@ -127,6 +128,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
...
@@ -127,6 +128,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.margin_rank_loss ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
...
...
paddle/fluid/CMakeLists.txt
浏览文件 @
38612695
...
@@ -12,6 +12,5 @@ endif(NOT WIN32)
...
@@ -12,6 +12,5 @@ endif(NOT WIN32)
if
(
WITH_INFERENCE
)
if
(
WITH_INFERENCE
)
# NOTE: please add subdirectory inference at last.
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
add_subdirectory
(
inference
)
add_subdirectory
(
train
)
endif
()
endif
()
add_subdirectory
(
train
)
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
38612695
...
@@ -64,7 +64,8 @@ class OpHandleBase {
...
@@ -64,7 +64,8 @@ class OpHandleBase {
virtual
bool
IsMultiDeviceTransfer
()
{
return
false
;
}
virtual
bool
IsMultiDeviceTransfer
()
{
return
false
;
}
const
platform
::
DeviceContext
*
DeviceContext
(
platform
::
Place
place
)
{
const
platform
::
DeviceContext
*
DeviceContext
(
platform
::
Place
place
)
{
return
dev_ctxes_
[
place
];
auto
it
=
dev_ctxes_
.
find
(
place
);
return
it
!=
dev_ctxes_
.
end
()
?
it
->
second
:
nullptr
;
}
}
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
void
SetDeviceContext
(
platform
::
Place
place
,
platform
::
DeviceContext
*
ctx_
)
{
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
38612695
...
@@ -46,6 +46,41 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
...
@@ -46,6 +46,41 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
}
}
template
<
typename
RefCntMap
>
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
<
Tensor
>*
gc
,
RefCntMap
*
ref_cnts
)
{
std
::
unordered_set
<
Tensor
*>
erase_tensors
;
auto
handler
=
[
&
](
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
it
=
ref_cnts
->
find
(
name
);
if
(
it
==
ref_cnts
->
end
())
continue
;
if
((
it
->
second
)
--
==
1
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
VLOG
(
10
)
<<
"Erase tensor
\'
"
<<
name
<<
"
\'
"
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
}
}
};
handler
(
op
->
Inputs
());
handler
(
op
->
Outputs
());
if
(
!
erase_tensors
.
empty
())
{
gc
->
Add
(
erase_tensors
);
}
}
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
void
Executor
::
Close
()
{
void
Executor
::
Close
()
{
...
@@ -331,9 +366,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -331,9 +366,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
if
(
max_memory_size
>=
0
)
{
// WhileOp would set keep_kids to false
// WhileGradOp would need the scopes created in WhileOp
// Perhaps, we should not perform eager deletion in WhileOp
// The scopes and variables created by WhileOp would be deleted
// in WhileGradOp.
if
(
max_memory_size
>=
0
&&
!
keep_kids
)
{
ctx
->
ResetReferenceCount
();
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
if
(
platform
::
is_gpu_place
(
place_
))
{
...
@@ -352,45 +391,8 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -352,45 +391,8 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
op
->
Run
(
*
local_scope
,
place_
);
op
->
Run
(
*
local_scope
,
place_
);
if
(
gc
!=
nullptr
)
{
if
(
gc
!=
nullptr
)
{
std
::
vector
<
std
::
string
>
erase_vars
;
DeleteUnusedTensors
(
*
local_scope
,
op
.
get
(),
gc
.
get
(),
for
(
auto
&
input
:
op
->
Inputs
())
{
&
(
ctx
->
cur_ref_cnts_
));
for
(
auto
&
input_name
:
input
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
input_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
// should delete it
erase_vars
.
emplace_back
(
input_name
);
ctx
->
cur_ref_cnts_
.
erase
(
input_name
);
}
else
{
--
(
it
->
second
);
}
}
}
for
(
auto
&
output
:
op
->
Outputs
())
{
for
(
auto
&
output_name
:
output
.
second
)
{
auto
it
=
ctx
->
cur_ref_cnts_
.
find
(
output_name
);
if
(
it
==
ctx
->
cur_ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
erase_vars
.
emplace_back
(
output_name
);
ctx
->
cur_ref_cnts_
.
erase
(
output_name
);
}
else
{
--
(
it
->
second
);
}
}
}
if
(
!
erase_vars
.
empty
())
{
std
::
vector
<
framework
::
LoDTensor
*>
erase_tensors
;
for
(
auto
&
name
:
erase_vars
)
{
auto
*
var
=
local_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
erase_tensors
.
push_back
(
tensor
);
}
}
if
(
!
erase_tensors
.
empty
())
gc
->
Add
(
erase_tensors
);
}
}
}
if
(
FLAGS_benchmark
)
{
if
(
FLAGS_benchmark
)
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
38612695
...
@@ -32,38 +32,32 @@ template <typename T>
...
@@ -32,38 +32,32 @@ template <typename T>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_set
<
std
::
string
>
ignored_vars
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
for
(
auto
var_desc
:
block
.
AllVars
())
{
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
for
(
auto
&
name_pair
:
name_map
)
{
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
||
var_desc
->
Persistable
())
{
for
(
auto
&
name
:
name_pair
.
second
)
{
ignored_vars
.
insert
(
var_desc
->
Name
());
// ignore persistable vars
auto
*
var_desc
=
block
.
FindVar
(
name
);
}
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
}
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
for
(
auto
op_desc
:
block
.
AllOps
())
{
type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
for
(
auto
&
input
:
op_desc
->
Inputs
())
{
continue
;
for
(
auto
&
input_name
:
input
.
second
)
{
if
(
!
ignored_vars
.
count
(
input_name
))
{
if
(
ref_cnts
.
count
(
input_name
))
++
ref_cnts
[
input_name
];
else
ref_cnts
[
input_name
]
=
1
;
}
}
}
}
for
(
auto
&
output
:
op_desc
->
Outputs
())
{
auto
it
=
ref_cnts
.
find
(
name
);
for
(
auto
output_name
:
output
.
second
)
{
if
(
it
!=
ref_cnts
.
end
())
{
if
(
!
ignored_vars
.
count
(
output_name
))
{
++
it
->
second
;
if
(
ref_cnts
.
count
(
output_name
))
}
else
{
++
ref_cnts
[
output_name
];
ref_cnts
[
name
]
=
1
;
else
ref_cnts
[
output_name
]
=
1
;
}
}
}
}
}
}
};
for
(
auto
op_desc
:
block
.
AllOps
())
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
}
}
return
ref_cnts
;
return
ref_cnts
;
}
}
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
38612695
...
@@ -30,7 +30,6 @@ pass_library(graph_to_program_pass base)
...
@@ -30,7 +30,6 @@ pass_library(graph_to_program_pass base)
pass_library
(
graph_viz_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
fc_fuse_pass inference
)
if
(
WITH_MKLDNN
)
if
(
WITH_MKLDNN
)
pass_library
(
conv_bias_mkldnn_fuse_pass inference
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
endif
()
endif
()
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
...
@@ -53,7 +52,6 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r
...
@@ -53,7 +52,6 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r
cc_test
(
graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass
)
cc_test
(
graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass
)
cc_test
(
test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector
)
cc_test
(
test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector
)
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
if
(
WITH_MKLDNN
)
if
(
WITH_MKLDNN
)
cc_test
(
test_conv_bias_mkldnn_fuse_pass SRCS conv_bias_mkldnn_fuse_pass_tester.cc DEPS conv_bias_mkldnn_fuse_pass
)
cc_test
(
test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass
)
cc_test
(
test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass
)
endif
()
endif
()
paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.cc
已删除
100644 → 0
浏览文件 @
8329a1f1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
unique_ptr
<
ir
::
Graph
>
ConvBiasFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
"conv_bias_mkldnn_fuse"
,
graph
.
get
());
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
"conv_bias_mkldnn_fuse/conv_input"
)
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvBias
conv_bias_pattern
(
gpd
.
mutable_pattern
(),
"conv_bias_mkldnn_fuse"
);
conv_bias_pattern
(
conv_input
);
int
found_conv_bias_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ConvBias fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
conv_weight
,
conv_weight
,
conv_bias_pattern
);
// Filter
GET_IR_NODE_FROM_SUBGRAPH
(
conv_out
,
conv_out
,
conv_bias_pattern
);
// tmp
GET_IR_NODE_FROM_SUBGRAPH
(
conv
,
conv
,
conv_bias_pattern
);
// CONV op
// bias
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_bias
,
eltwise_bias
,
conv_bias_pattern
);
// output
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_out
,
eltwise_out
,
conv_bias_pattern
);
// elementwise_add op
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise
,
eltwise
,
conv_bias_pattern
);
// Create an ConvBias Node.
OpDesc
desc
;
std
::
string
conv_bias_i_in
=
subgraph
.
at
(
conv_input
)
->
Name
();
std
::
string
conv_bias_w_in
=
conv_weight
->
Name
();
std
::
string
conv_bias_b_in
=
eltwise_bias
->
Name
();
std
::
string
conv_bias_out
=
eltwise_out
->
Name
();
desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
conv_bias_i_in
}));
desc
.
SetInput
(
"Filter"
,
std
::
vector
<
std
::
string
>
({
conv_bias_w_in
}));
desc
.
SetInput
(
"Bias"
,
std
::
vector
<
std
::
string
>
({
conv_bias_b_in
}));
desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
conv_bias_out
}));
desc
.
SetType
(
"conv2d"
);
for
(
auto
&
attr
:
conv
->
Op
()
->
GetAttrMap
())
{
desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
auto
conv_bias_node
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
conv
,
eltwise
,
conv_out
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
subgraph
.
at
(
conv_input
),
conv_bias_node
);
IR_NODE_LINK_TO
(
conv_weight
,
conv_bias_node
);
IR_NODE_LINK_TO
(
eltwise_bias
,
conv_bias_node
);
IR_NODE_LINK_TO
(
conv_bias_node
,
eltwise_out
);
found_conv_bias_count
++
;
};
gpd
(
graph
.
get
(),
handler
);
AddStatis
(
found_conv_bias_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv_bias_mkldnn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvBiasFusePass
);
paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass_tester.cc
已删除
100644 → 0
浏览文件 @
8329a1f1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.h"
#include <gtest/gtest.h>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
if
(
type
==
"conv2d"
)
{
op
->
SetAttr
(
"use_mkldnn"
,
true
);
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Filter"
,
{
inputs
[
1
]});
}
else
if
(
type
==
"elementwise_add"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Y"
,
{
inputs
[
1
]});
}
op
->
SetOutput
(
"Out"
,
outputs
);
}
// a->OP0->b
// b->OP1->c
// (c, weights)->conv->f
// (f, bias)->elementwise_add->g
ProgramDesc
BuildProgramDesc
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"weights"
,
"bias"
,
"f"
,
"g"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
if
(
v
==
"weights"
||
v
==
"bias"
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"OP0"
,
std
::
vector
<
std
::
string
>
({
"a"
}),
std
::
vector
<
std
::
string
>
({
"b"
}));
SetOp
(
&
prog
,
"OP1"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
std
::
vector
<
std
::
string
>
({
"c"
}));
SetOp
(
&
prog
,
"conv2d"
,
std
::
vector
<
std
::
string
>
({
"c"
,
"weights"
}),
std
::
vector
<
std
::
string
>
({
"f"
}));
SetOp
(
&
prog
,
"elementwise_add"
,
std
::
vector
<
std
::
string
>
({
"f"
,
"bias"
}),
std
::
vector
<
std
::
string
>
({
"g"
}));
return
prog
;
}
TEST
(
ConvBiasFusePass
,
basic
)
{
auto
prog
=
BuildProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_bias_mkldnn_fuse_pass"
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
// Remove 3 Nodes: conv, elementwise_add, conv_out
// Add 1 Node: ConvBias
EXPECT_EQ
(
original_nodes_num
-
2
,
current_nodes_num
);
// Assert conv_bias op in newly generated graph
int
conv_bias_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
"conv2d"
)
{
if
(
node
->
Op
()
->
HasAttr
(
"use_mkldnn"
))
{
bool
use_mkldnn
=
boost
::
get
<
bool
>
(
node
->
Op
()
->
GetAttr
(
"use_mkldnn"
));
if
(
use_mkldnn
)
{
auto
names
=
node
->
Op
()
->
InputNames
();
if
(
std
::
find
(
names
.
begin
(),
names
.
end
(),
"Bias"
)
!=
names
.
end
())
{
conv_bias_count
++
;
}
}
}
}
}
EXPECT_EQ
(
conv_bias_count
,
1
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
conv_bias_mkldnn_fuse_pass
);
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
38612695
...
@@ -44,89 +44,6 @@ namespace ir {
...
@@ -44,89 +44,6 @@ namespace ir {
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template
<
typename
UnaryOperation
>
LoDTensor
tensor_apply
(
const
LoDTensor
&
vec
,
UnaryOperation
f
)
{
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec
.
dims
());
const
float
*
x
=
vec
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
x
[
i
]);
}
return
vec_y
;
}
void
tensor_apply_inplace
(
LoDTensor
*
vec
,
float
(
*
f
)(
float
))
{
float
*
data
=
vec
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
->
numel
();
i
++
)
{
data
[
i
]
=
f
(
data
[
i
]);
}
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
(),
vec_b
.
dims
());
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec_a
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
a
[
i
],
b
[
i
]);
}
return
vec_y
;
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise_broadcast
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
()[
0
],
vec_b
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
()[
1
],
1
);
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
a_height
=
vec_a
.
dims
()[
0
];
size_t
a_width
=
vec_a
.
dims
()[
1
];
for
(
size_t
h
=
0
;
h
<
a_height
;
h
++
)
{
for
(
size_t
w
=
0
;
w
<
a_width
;
++
w
)
{
*
(
y
++
)
=
f
(
*
(
a
++
),
b
[
h
]);
}
}
return
vec_y
;
}
// reshape to two dimensions {A, B * C * ...}
void
make_tensor_2d
(
LoDTensor
*
tensor_to_reshape
)
{
auto
dims_count
=
tensor_to_reshape
->
dims
().
size
();
PADDLE_ENFORCE_GT
(
dims_count
,
0
);
int
size2
=
1
;
for
(
int
i
=
1
;
i
<
dims_count
;
i
++
)
{
size2
*=
tensor_to_reshape
->
dims
()[
i
];
}
tensor_to_reshape
->
Resize
(
make_ddim
({
tensor_to_reshape
->
dims
()[
0
],
size2
}));
}
void
recompute_conv_weights
(
LoDTensor
*
weights
,
LoDTensor
*
tmp
)
{
// remember the weights tensor shape {A, B, C, ...}
auto
weights_shape
=
weights
->
dims
();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d
(
weights
);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d
(
tmp
);
*
weights
=
tensor_apply_eltwise_broadcast
(
*
weights
,
*
tmp
,
std
::
multiplies
<
float
>
());
// reshape weights to the original dims {A, B, C, ...}
weights
->
Resize
(
weights_shape
);
}
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
//
ir
::
Node
*
conv_weight
,
//
const
ir
::
Node
&
bn_scale
,
//
const
ir
::
Node
&
bn_scale
,
//
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
const
ir
::
Node
&
bn_variance
,
//
const
ir
::
Node
&
bn_variance
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
float
epsilon
)
{
float
epsilon
)
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
EigenMatrixArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
// Re-compute bias of conv2d from BN
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
std_tensor
=
LoDTensor
();
ConstEigenVectorArrayMap
scale_array
(
scale_tensor
->
data
<
float
>
(),
std_tensor
.
Resize
(
bn_bias_tensor
.
dims
());
scale_tensor
->
numel
(),
1
);
std_tensor
=
EigenVectorArrayMap
variance_array
(
tensor_apply
(
*
variance_tensor
,
[
&
](
float
x
)
{
return
x
+
epsilon
;
});
variance_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
variance_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
mean_array
(
mean_tensor
->
data
<
float
>
(),
mean_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
bn_bias_array
(
bn_bias_tensor
.
data
<
float
>
(),
bn_bias_tensor
.
numel
(),
1
);
using
EigenVectorArrayMap
=
// variance will not be used anymore, so make it std_array and then tmp_array
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
variance_array
+=
epsilon
;
variance_array
=
variance_array
.
sqrt
();
variance_array
=
scale_array
/
variance_array
;
EigenVectorArrayMap
eltwise_y_in_array
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
1
);
EigenVectorArrayMap
std_vec
(
eltwise_y_in_array
=
std_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
std_tensor
.
numel
(),
((
eltwise_y_in_array
-
mean_array
)
*
variance_array
)
+
bn_bias_array
;
1
);
std_vec
=
std_vec
.
sqrt
();
auto
tmp_tensor
=
tensor_apply_eltwise
(
*
scale_tensor
,
std_tensor
,
std
::
divides
<
float
>
());
auto
tensor_minus
=
tensor_apply_eltwise
(
*
eltwise_y_in_tensor
,
*
mean_tensor
,
std
::
minus
<
float
>
());
auto
tensor_mul
=
tensor_apply_eltwise
(
tensor_minus
,
tmp_tensor
,
std
::
multiplies
<
float
>
());
*
eltwise_y_in_tensor
=
tensor_apply_eltwise
(
tensor_mul
,
bn_bias_tensor
,
std
::
plus
<
float
>
());
// Re-compute weight of conv2d from BN
// Re-compute weight of conv2d from BN
auto
*
current_param
=
auto
*
weights
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
weights_shape
=
weights
->
dims
();
recompute_conv_weights
(
current_param
,
&
tmp_tensor
);
auto
weights_shape_2d
=
flatten_to_2d
(
weights_shape
,
1
);
EigenMatrixArrayMap
weights_array_2d
(
weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
weights_shape_2d
[
0
],
weights_shape_2d
[
1
]);
weights_array_2d
.
colwise
()
*=
variance_array
;
}
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
38612695
...
@@ -964,38 +964,6 @@ PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
...
@@ -964,38 +964,6 @@ PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
return
ele_add_grad
;
return
ele_add_grad
;
}
}
PDNode
*
patterns
::
ConvBias
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
conv_input
)
{
// Create Operators
conv_input
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
auto
*
conv_op
=
pattern
->
NewNode
(
conv_repr
())
->
assert_is_op
(
"conv2d"
);
auto
*
eltiwse_op
=
pattern
->
NewNode
(
eltwise_repr
())
->
assert_is_op
(
"elementwise_add"
);
// Create variables
// Filter
auto
*
conv_weight_var
=
pattern
->
NewNode
(
conv_weight_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"conv2d"
,
"Filter"
);
// intermediate variable, will be removed in the IR after fuse.
auto
*
conv_out_var
=
pattern
->
NewNode
(
conv_out_repr
())
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"conv2d"
)
->
assert_is_op_input
(
"elementwise_add"
);
// Bias stored in elementwise_add
auto
*
eltwise_bias_var
=
pattern
->
NewNode
(
eltwise_bias_repr
())
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
// output
auto
*
eltwise_out_var
=
pattern
->
NewNode
(
eltwise_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
);
conv_op
->
LinksFrom
({
conv_input
,
conv_weight_var
}).
LinksTo
({
conv_out_var
});
eltiwse_op
->
LinksFrom
({
conv_out_var
,
eltwise_bias_var
})
.
LinksTo
({
eltwise_out_var
});
return
eltwise_out_var
;
}
}
// namespace ir
}
// namespace ir
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
38612695
...
@@ -578,27 +578,6 @@ struct ElewiseAddActInplaceGrad : public PatternBase {
...
@@ -578,27 +578,6 @@ struct ElewiseAddActInplaceGrad : public PatternBase {
PATTERN_DECL_NODE
(
d_ele_y
);
PATTERN_DECL_NODE
(
d_ele_y
);
PATTERN_DECL_NODE
(
ele_y
);
PATTERN_DECL_NODE
(
ele_y
);
};
};
// Conv with Elementwise_add as bias
// op: conv + elementwise_add
// named nodes:
// conv_input, conv_weight,
// conv_out, conv,
// eltwise_bias, eltwise_out,
// elementwise_add
struct
ConvBias
:
public
PatternBase
{
ConvBias
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_bias"
)
{}
PDNode
*
operator
()(
PDNode
*
conv_input
);
// declare operator node's name
PATTERN_DECL_NODE
(
conv
);
PATTERN_DECL_NODE
(
eltwise
);
// declare variable node's name
PATTERN_DECL_NODE
(
conv_weight
);
PATTERN_DECL_NODE
(
conv_out
);
PATTERN_DECL_NODE
(
eltwise_bias
);
PATTERN_DECL_NODE
(
eltwise_out
);
};
}
// namespace patterns
}
// namespace patterns
// Link two ir::Nodes from each other.
// Link two ir::Nodes from each other.
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
38612695
...
@@ -307,6 +307,10 @@ ParallelExecutor::~ParallelExecutor() {
...
@@ -307,6 +307,10 @@ ParallelExecutor::~ParallelExecutor() {
}
}
}
}
}
}
// member_ must be destructed before gcs_ since the destructor of
// ReferenceCountOpHandle use raw pointers of gcs_ inside.
member_
.
reset
();
}
}
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
38612695
...
@@ -75,7 +75,7 @@ class ParallelExecutor {
...
@@ -75,7 +75,7 @@ class ParallelExecutor {
private:
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
ParallelExecutorPrivate
*
member_
;
std
::
unique_ptr
<
ParallelExecutorPrivate
>
member_
;
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
38612695
...
@@ -49,18 +49,18 @@ int64_t GetEagerDeletionThreshold() {
...
@@ -49,18 +49,18 @@ int64_t GetEagerDeletionThreshold() {
Scope
::~
Scope
()
{
DropKids
();
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
Scope
&
Scope
::
NewScope
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
kids_
.
push_back
(
new
Scope
(
this
));
kids_
.
push_back
(
new
Scope
(
this
));
return
*
kids_
.
back
();
return
*
kids_
.
back
();
}
}
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
VarInternal
(
name
);
return
VarInternal
(
name
);
}
}
Variable
*
Scope
::
Var
(
std
::
string
*
name
)
{
Variable
*
Scope
::
Var
(
std
::
string
*
name
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
if
(
name
!=
nullptr
)
{
if
(
name
!=
nullptr
)
{
*
name
=
new_name
;
*
name
=
new_name
;
...
@@ -69,29 +69,34 @@ Variable* Scope::Var(std::string* name) {
...
@@ -69,29 +69,34 @@ Variable* Scope::Var(std::string* name) {
}
}
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarInternal
(
name
);
return
FindVarInternal
(
name
);
}
}
Variable
*
Scope
::
FindLocalVar
(
const
std
::
string
&
name
)
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarLocally
(
name
);
}
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
FindScopeInternal
(
var
);
return
FindScopeInternal
(
var
);
}
}
void
Scope
::
DropKids
()
{
void
Scope
::
DropKids
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
for
(
Scope
*
s
:
kids_
)
delete
s
;
for
(
Scope
*
s
:
kids_
)
delete
s
;
kids_
.
clear
();
kids_
.
clear
();
}
}
bool
Scope
::
HasKid
(
const
Scope
*
scope
)
const
{
bool
Scope
::
HasKid
(
const
Scope
*
scope
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
return
it
!=
this
->
kids_
.
end
();
return
it
!=
this
->
kids_
.
end
();
}
}
std
::
vector
<
std
::
string
>
Scope
::
LocalVarNames
()
const
{
std
::
vector
<
std
::
string
>
Scope
::
LocalVarNames
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
std
::
vector
<
std
::
string
>
known_vars
;
std
::
vector
<
std
::
string
>
known_vars
;
known_vars
.
reserve
(
this
->
vars_
.
size
());
known_vars
.
reserve
(
this
->
vars_
.
size
());
for
(
auto
&
p
:
vars_
)
{
for
(
auto
&
p
:
vars_
)
{
...
@@ -101,7 +106,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
...
@@ -101,7 +106,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
}
}
void
Scope
::
DeleteScope
(
Scope
*
scope
)
const
{
void
Scope
::
DeleteScope
(
Scope
*
scope
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
auto
it
=
std
::
find
(
this
->
kids_
.
begin
(),
this
->
kids_
.
end
(),
scope
);
PADDLE_ENFORCE
(
it
!=
this
->
kids_
.
end
(),
"Cannot find %p as kid scope"
,
scope
);
PADDLE_ENFORCE
(
it
!=
this
->
kids_
.
end
(),
"Cannot find %p as kid scope"
,
scope
);
this
->
kids_
.
erase
(
it
);
this
->
kids_
.
erase
(
it
);
...
@@ -114,7 +119,7 @@ void Scope::DeleteScope(Scope* scope) const {
...
@@ -114,7 +119,7 @@ void Scope::DeleteScope(Scope* scope) const {
}
}
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
...
@@ -127,12 +132,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
...
@@ -127,12 +132,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
void
Scope
::
Rename
(
const
std
::
string
&
origin_name
,
void
Scope
::
Rename
(
const
std
::
string
&
origin_name
,
const
std
::
string
&
new_name
)
const
{
const
std
::
string
&
new_name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
RenameInternal
(
origin_name
,
new_name
);
RenameInternal
(
origin_name
,
new_name
);
}
}
std
::
string
Scope
::
Rename
(
const
std
::
string
&
origin_name
)
const
{
std
::
string
Scope
::
Rename
(
const
std
::
string
&
origin_name
)
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
RenameInternal
(
origin_name
,
new_name
);
RenameInternal
(
origin_name
,
new_name
);
return
new_name
;
return
new_name
;
...
...
paddle/fluid/framework/scope.h
浏览文件 @
38612695
...
@@ -63,6 +63,11 @@ class Scope {
...
@@ -63,6 +63,11 @@ class Scope {
/// Caller doesn't own the returned Variable.
/// Caller doesn't own the returned Variable.
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
/// Find a variable in the current scope.
/// Return nullptr if cannot find.
/// Caller doesn't own the returned Variable.
Variable
*
FindLocalVar
(
const
std
::
string
&
name
)
const
;
const
Scope
*
parent
()
const
{
return
parent_
;
}
const
Scope
*
parent
()
const
{
return
parent_
;
}
/// Find the scope or an ancestor scope that contains the given variable.
/// Find the scope or an ancestor scope that contains the given variable.
...
...
paddle/fluid/framework/tensor_util.cc
浏览文件 @
38612695
...
@@ -36,6 +36,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
...
@@ -36,6 +36,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto
size
=
src
.
numel
()
*
SizeOfType
(
src
.
type
());
auto
size
=
src
.
numel
()
*
SizeOfType
(
src
.
type
());
if
(
platform
::
is_cpu_place
(
src_place
)
&&
platform
::
is_cpu_place
(
dst_place
))
{
if
(
platform
::
is_cpu_place
(
src_place
)
&&
platform
::
is_cpu_place
(
dst_place
))
{
if
(
src_ptr
==
dst_ptr
)
{
VLOG
(
3
)
<<
"Skip copy the same data async from "
<<
src_place
<<
" to "
<<
dst_place
;
return
;
}
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
}
}
...
@@ -71,6 +76,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
...
@@ -71,6 +76,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto
stream
=
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
).
stream
();
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
).
stream
();
if
(
platform
::
is_same_place
(
src_place
,
dst_place
))
{
if
(
platform
::
is_same_place
(
src_place
,
dst_place
))
{
if
(
src_ptr
==
dst_ptr
)
{
VLOG
(
3
)
<<
"Skip copy the same data async from "
<<
src_place
<<
" to "
<<
dst_place
;
return
;
}
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_gpu_place
,
src_ptr
,
size
,
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_gpu_place
,
src_ptr
,
size
,
stream
);
stream
);
}
else
{
}
else
{
...
@@ -114,6 +124,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
...
@@ -114,6 +124,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
auto
dst_ptr
=
dst
->
mutable_data
(
dst_place
,
src
.
type
());
auto
dst_ptr
=
dst
->
mutable_data
(
dst_place
,
src
.
type
());
auto
size
=
src
.
numel
()
*
SizeOfType
(
src
.
type
());
auto
size
=
src
.
numel
()
*
SizeOfType
(
src
.
type
());
if
(
platform
::
is_cpu_place
(
src_place
)
&&
platform
::
is_cpu_place
(
dst_place
))
{
if
(
platform
::
is_cpu_place
(
src_place
)
&&
platform
::
is_cpu_place
(
dst_place
))
{
if
(
src_ptr
==
dst_ptr
)
{
VLOG
(
3
)
<<
"Skip copy the same data from "
<<
src_place
<<
" to "
<<
dst_place
;
return
;
}
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
}
}
...
@@ -130,6 +145,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
...
@@ -130,6 +145,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_cpu_place
,
src_ptr
,
size
,
nullptr
);
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_cpu_place
,
src_ptr
,
size
,
nullptr
);
}
else
if
(
platform
::
is_gpu_place
(
src_place
)
&&
}
else
if
(
platform
::
is_gpu_place
(
src_place
)
&&
platform
::
is_gpu_place
(
dst_place
))
{
platform
::
is_gpu_place
(
dst_place
))
{
if
(
src_ptr
==
dst_ptr
&&
platform
::
is_same_place
(
src_place
,
dst_place
))
{
VLOG
(
3
)
<<
"Skip copy the same data from "
<<
src_place
<<
" to "
<<
dst_place
;
return
;
}
auto
src_gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
src_place
);
auto
src_gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
src_place
);
auto
dst_gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dst_place
);
auto
dst_gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dst_place
);
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_gpu_place
,
src_ptr
,
size
,
nullptr
);
memory
::
Copy
(
dst_gpu_place
,
dst_ptr
,
src_gpu_place
,
src_ptr
,
size
,
nullptr
);
...
...
paddle/fluid/framework/tensor_util_test.cc
浏览文件 @
38612695
...
@@ -41,6 +41,11 @@ TEST(TensorCopy, Tensor) {
...
@@ -41,6 +41,11 @@ TEST(TensorCopy, Tensor) {
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr
[
i
]);
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr
[
i
]);
}
}
TensorCopy
(
dst_tensor
,
*
cpu_place
,
&
dst_tensor
);
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr
[
i
]);
}
EXPECT_TRUE
(
dst_tensor
.
layout
()
==
src_tensor
.
layout
());
EXPECT_TRUE
(
dst_tensor
.
layout
()
==
src_tensor
.
layout
());
Tensor
slice_tensor
=
src_tensor
.
Slice
(
1
,
2
);
Tensor
slice_tensor
=
src_tensor
.
Slice
(
1
,
2
);
...
@@ -82,6 +87,15 @@ TEST(TensorCopy, Tensor) {
...
@@ -82,6 +87,15 @@ TEST(TensorCopy, Tensor) {
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr
[
i
]);
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr
[
i
]);
}
}
// Copy the same tensor
TensorCopy
(
gpu_tensor
,
*
gpu_place
,
gpu_ctx
,
&
gpu_tensor
);
gpu_ctx
.
Wait
();
const
int
*
dst_ptr_tmp
=
dst_tensor
.
data
<
int
>
();
EXPECT_NE
(
src_ptr
,
dst_ptr_tmp
);
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
EXPECT_EQ
(
src_ptr
[
i
],
dst_ptr_tmp
[
i
]);
}
Tensor
slice_tensor
=
src_tensor
.
Slice
(
1
,
2
);
Tensor
slice_tensor
=
src_tensor
.
Slice
(
1
,
2
);
// CPU Slice Tensor to GPU Tensor
// CPU Slice Tensor to GPU Tensor
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
38612695
...
@@ -70,7 +70,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
...
@@ -70,7 +70,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
auto
trt_teller
=
[
&
](
const
Node
*
node
)
{
auto
trt_teller
=
[
&
](
const
Node
*
node
)
{
std
::
unordered_set
<
std
::
string
>
teller_set
(
std
::
unordered_set
<
std
::
string
>
teller_set
(
{
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
{
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"dropout"
});
"elementwise_add"
,
"dropout"
});
if
(
!
node
->
IsFunction
())
return
false
;
if
(
!
node
->
IsFunction
())
return
false
;
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
38612695
...
@@ -76,7 +76,6 @@ class Analyzer : public OrderedRegistry<PassManager> {
...
@@ -76,7 +76,6 @@ class Analyzer : public OrderedRegistry<PassManager> {
"conv_bn_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
#ifdef PADDLE_WITH_MKLDNN
#ifdef PADDLE_WITH_MKLDNN
"conv_bias_mkldnn_fuse_pass"
,
//
"conv_relu_mkldnn_fuse_pass"
,
//
"conv_relu_mkldnn_fuse_pass"
,
//
#endif
#endif
}};
}};
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
38612695
...
@@ -25,9 +25,11 @@
...
@@ -25,9 +25,11 @@
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool
(
profile
);
DECLARE_bool
(
profile
);
DECLARE_int32
(
paddle_num_threads
);
namespace
paddle
{
namespace
paddle
{
...
@@ -47,6 +49,9 @@ bool AnalysisPredictor::Init(
...
@@ -47,6 +49,9 @@ bool AnalysisPredictor::Init(
}
}
#endif
#endif
// no matter with or without MKLDNN
paddle
::
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
if
(
config_
.
use_gpu
)
{
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
LOG
(
WARNING
)
<<
"ir optimize only supports CPU currently, enable_ir_optim "
LOG
(
WARNING
)
<<
"ir optimize only supports CPU currently, enable_ir_optim "
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
38612695
...
@@ -23,9 +23,11 @@ limitations under the License. */
...
@@ -23,9 +23,11 @@ limitations under the License. */
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool
(
profile
,
false
,
"Turn on profiler for fluid"
);
DEFINE_bool
(
profile
,
false
,
"Turn on profiler for fluid"
);
DECLARE_int32
(
paddle_num_threads
);
namespace
paddle
{
namespace
paddle
{
namespace
{
namespace
{
...
@@ -72,6 +74,9 @@ bool NativePaddlePredictor::Init(
...
@@ -72,6 +74,9 @@ bool NativePaddlePredictor::Init(
}
}
#endif
#endif
// no matter with or without MKLDNN
paddle
::
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
if
(
config_
.
use_gpu
)
{
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
}
else
{
}
else
{
...
...
paddle/fluid/inference/api/api_tensorrt_subgraph_engine.cc
浏览文件 @
38612695
...
@@ -185,3 +185,4 @@ USE_TRT_CONVERTER(softmax);
...
@@ -185,3 +185,4 @@ USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER
(
batch_norm
);
USE_TRT_CONVERTER
(
batch_norm
);
USE_TRT_CONVERTER
(
concat
);
USE_TRT_CONVERTER
(
concat
);
USE_TRT_CONVERTER
(
dropout
);
USE_TRT_CONVERTER
(
dropout
);
USE_TRT_CONVERTER
(
pad
);
paddle/fluid/inference/api/demo_ci/run.sh
浏览文件 @
38612695
...
@@ -100,19 +100,17 @@ for WITH_STATIC_LIB in ON OFF; do
...
@@ -100,19 +100,17 @@ for WITH_STATIC_LIB in ON OFF; do
rm
-rf
*
rm
-rf
*
cmake ..
-DPADDLE_LIB
=
${
PADDLE_ROOT
}
/build/fluid_install_dir/
\
cmake ..
-DPADDLE_LIB
=
${
PADDLE_ROOT
}
/build/fluid_install_dir/
\
-DWITH_MKL
=
$TURN_ON_MKL
\
-DWITH_MKL
=
$TURN_ON_MKL
\
-DDEMO_NAME
=
vis
_demo
\
-DDEMO_NAME
=
trt_mobilenet
_demo
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_GPU
=
$TEST_GPU_CPU
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DWITH_STATIC_LIB
=
$WITH_STATIC_LIB
\
-DUSE_TENSORRT
=
$USE_TENSORRT
\
-DUSE_TENSORRT
=
$USE_TENSORRT
\
-DTENSORRT_INCLUDE_DIR
=
$TENSORRT_INCLUDE_DIR
\
-DTENSORRT_INCLUDE_DIR
=
$TENSORRT_INCLUDE_DIR
\
-DTENSORRT_LIB_DIR
=
$TENSORRT_LIB_DIR
-DTENSORRT_LIB_DIR
=
$TENSORRT_LIB_DIR
make
-j
make
-j
./
vis
_demo
\
./
trt_mobilenet
_demo
\
--modeldir
=
$DATA_DIR
/mobilenet/model
\
--modeldir
=
$DATA_DIR
/mobilenet/model
\
--data
=
$DATA_DIR
/mobilenet/data.txt
\
--data
=
$DATA_DIR
/mobilenet/data.txt
\
--refer
=
$DATA_DIR
/mobilenet/result.txt
\
--refer
=
$DATA_DIR
/mobilenet/result.txt
--use_gpu
=
true
\
--use_trt
=
true
fi
fi
done
done
set
+x
set
+x
paddle/fluid/inference/api/demo_ci/trt_mobilenet_demo.cc
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains demo of mobilenet for tensorrt.
*/
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
#include "paddle/fluid/inference/demo_ci/utils.h"
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
DEFINE_string
(
modeldir
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
refer
,
""
,
"path to reference result for comparison."
);
DEFINE_string
(
data
,
""
,
"path of data; each line is a record, format is "
"'<space splitted floats as data>
\t
<space splitted ints as shape'"
);
namespace
paddle
{
namespace
demo
{
/*
* Use the tensorrt fluid engine to inference the demo.
*/
void
Main
()
{
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
paddle
::
contrib
::
MixedRTConfig
config
;
config
.
param_file
=
FLAGS_modeldir
+
"/__params__"
;
config
.
prog_file
=
FLAGS_modeldir
+
"/__model__"
;
config
.
use_gpu
=
true
;
config
.
device
=
0
;
config
.
max_batch_size
=
1
;
config
.
fraction_of_gpu_memory
=
0.1
;
// set by yourself
predictor
=
CreatePaddlePredictor
<
paddle
::
contrib
::
MixedRTConfig
>
(
config
);
VLOG
(
3
)
<<
"begin to process data"
;
// Just a single batch of data.
std
::
string
line
;
std
::
ifstream
file
(
FLAGS_data
);
std
::
getline
(
file
,
line
);
auto
record
=
ProcessALine
(
line
);
file
.
close
();
// Inference.
PaddleTensor
input
;
input
.
shape
=
record
.
shape
;
input
.
data
=
PaddleBuf
(
record
.
data
.
data
(),
record
.
data
.
size
()
*
sizeof
(
float
));
input
.
dtype
=
PaddleDType
::
FLOAT32
;
VLOG
(
3
)
<<
"run executor"
;
std
::
vector
<
PaddleTensor
>
output
;
predictor
->
Run
({
input
},
&
output
,
1
);
VLOG
(
3
)
<<
"output.size "
<<
output
.
size
();
auto
&
tensor
=
output
.
front
();
VLOG
(
3
)
<<
"output: "
<<
SummaryTensor
(
tensor
);
// compare with reference result
CheckOutput
(
FLAGS_refer
,
tensor
);
}
}
// namespace demo
}
// namespace paddle
int
main
(
int
argc
,
char
**
argv
)
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
paddle
::
demo
::
Main
();
return
0
;
}
paddle/fluid/inference/api/demo_ci/utils.h
浏览文件 @
38612695
...
@@ -14,6 +14,8 @@
...
@@ -14,6 +14,8 @@
#pragma once
#pragma once
#include <algorithm>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/inference/paddle_inference_api.h"
#include "paddle/fluid/inference/paddle_inference_api.h"
...
@@ -21,6 +23,11 @@
...
@@ -21,6 +23,11 @@
namespace
paddle
{
namespace
paddle
{
namespace
demo
{
namespace
demo
{
struct
Record
{
std
::
vector
<
float
>
data
;
std
::
vector
<
int32_t
>
shape
;
};
static
void
split
(
const
std
::
string
&
str
,
char
sep
,
static
void
split
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
std
::
string
>*
pieces
)
{
std
::
vector
<
std
::
string
>*
pieces
)
{
pieces
->
clear
();
pieces
->
clear
();
...
@@ -39,6 +46,58 @@ static void split(const std::string& str, char sep,
...
@@ -39,6 +46,58 @@ static void split(const std::string& str, char sep,
}
}
}
}
Record
ProcessALine
(
const
std
::
string
&
line
)
{
VLOG
(
3
)
<<
"process a line"
;
std
::
vector
<
std
::
string
>
columns
;
split
(
line
,
'\t'
,
&
columns
);
CHECK_EQ
(
columns
.
size
(),
2UL
)
<<
"data format error, should be <data>
\t
<shape>"
;
Record
record
;
std
::
vector
<
std
::
string
>
data_strs
;
split
(
columns
[
0
],
' '
,
&
data_strs
);
for
(
auto
&
d
:
data_strs
)
{
record
.
data
.
push_back
(
std
::
stof
(
d
));
}
std
::
vector
<
std
::
string
>
shape_strs
;
split
(
columns
[
1
],
' '
,
&
shape_strs
);
for
(
auto
&
s
:
shape_strs
)
{
record
.
shape
.
push_back
(
std
::
stoi
(
s
));
}
VLOG
(
3
)
<<
"data size "
<<
record
.
data
.
size
();
VLOG
(
3
)
<<
"data shape size "
<<
record
.
shape
.
size
();
return
record
;
}
void
CheckOutput
(
const
std
::
string
&
referfile
,
const
PaddleTensor
&
output
)
{
std
::
string
line
;
std
::
ifstream
file
(
referfile
);
std
::
getline
(
file
,
line
);
auto
refer
=
ProcessALine
(
line
);
file
.
close
();
size_t
numel
=
output
.
data
.
length
()
/
PaddleDtypeSize
(
output
.
dtype
);
VLOG
(
3
)
<<
"predictor output numel "
<<
numel
;
VLOG
(
3
)
<<
"reference output numel "
<<
refer
.
data
.
size
();
CHECK_EQ
(
numel
,
refer
.
data
.
size
());
switch
(
output
.
dtype
)
{
case
PaddleDType
::
INT64
:
{
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
CHECK_EQ
(
static_cast
<
int64_t
*>
(
output
.
data
.
data
())[
i
],
refer
.
data
[
i
]);
}
break
;
}
case
PaddleDType
::
FLOAT32
:
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
CHECK_LT
(
fabs
(
static_cast
<
float
*>
(
output
.
data
.
data
())[
i
]
-
refer
.
data
[
i
]),
1e-5
);
}
break
;
}
}
/*
/*
* Get a summary of a PaddleTensor content.
* Get a summary of a PaddleTensor content.
*/
*/
...
...
paddle/fluid/inference/api/demo_ci/vis_demo.cc
浏览文件 @
38612695
...
@@ -18,10 +18,6 @@ limitations under the License. */
...
@@ -18,10 +18,6 @@ limitations under the License. */
#include <gflags/gflags.h>
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
#include <fstream>
#include <iostream>
// #include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/inference/demo_ci/utils.h"
#include "paddle/fluid/inference/demo_ci/utils.h"
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
@@ -34,99 +30,28 @@ DEFINE_string(
...
@@ -34,99 +30,28 @@ DEFINE_string(
"path of data; each line is a record, format is "
"path of data; each line is a record, format is "
"'<space splitted floats as data>
\t
<space splitted ints as shape'"
);
"'<space splitted floats as data>
\t
<space splitted ints as shape'"
);
DEFINE_bool
(
use_gpu
,
false
,
"Whether use gpu."
);
DEFINE_bool
(
use_gpu
,
false
,
"Whether use gpu."
);
DEFINE_bool
(
use_trt
,
false
,
"Whether use trt."
);
namespace
paddle
{
namespace
paddle
{
namespace
demo
{
namespace
demo
{
struct
Record
{
std
::
vector
<
float
>
data
;
std
::
vector
<
int32_t
>
shape
;
};
void
split
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
std
::
string
>*
pieces
);
Record
ProcessALine
(
const
std
::
string
&
line
)
{
VLOG
(
3
)
<<
"process a line"
;
std
::
vector
<
std
::
string
>
columns
;
split
(
line
,
'\t'
,
&
columns
);
CHECK_EQ
(
columns
.
size
(),
2UL
)
<<
"data format error, should be <data>
\t
<shape>"
;
Record
record
;
std
::
vector
<
std
::
string
>
data_strs
;
split
(
columns
[
0
],
' '
,
&
data_strs
);
for
(
auto
&
d
:
data_strs
)
{
record
.
data
.
push_back
(
std
::
stof
(
d
));
}
std
::
vector
<
std
::
string
>
shape_strs
;
split
(
columns
[
1
],
' '
,
&
shape_strs
);
for
(
auto
&
s
:
shape_strs
)
{
record
.
shape
.
push_back
(
std
::
stoi
(
s
));
}
VLOG
(
3
)
<<
"data size "
<<
record
.
data
.
size
();
VLOG
(
3
)
<<
"data shape size "
<<
record
.
shape
.
size
();
return
record
;
}
void
CheckOutput
(
const
std
::
string
&
referfile
,
const
PaddleTensor
&
output
)
{
std
::
string
line
;
std
::
ifstream
file
(
referfile
);
std
::
getline
(
file
,
line
);
auto
refer
=
ProcessALine
(
line
);
file
.
close
();
size_t
numel
=
output
.
data
.
length
()
/
PaddleDtypeSize
(
output
.
dtype
);
VLOG
(
3
)
<<
"predictor output numel "
<<
numel
;
VLOG
(
3
)
<<
"reference output numel "
<<
refer
.
data
.
size
();
CHECK_EQ
(
numel
,
refer
.
data
.
size
());
switch
(
output
.
dtype
)
{
case
PaddleDType
::
INT64
:
{
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
CHECK_EQ
(
static_cast
<
int64_t
*>
(
output
.
data
.
data
())[
i
],
refer
.
data
[
i
]);
}
break
;
}
case
PaddleDType
::
FLOAT32
:
for
(
size_t
i
=
0
;
i
<
numel
;
++
i
)
{
CHECK_LT
(
fabs
(
static_cast
<
float
*>
(
output
.
data
.
data
())[
i
]
-
refer
.
data
[
i
]),
1e-5
);
}
break
;
}
}
/*
/*
* Use the native fluid engine to inference the demo.
* Use the native fluid engine to inference the demo.
*/
*/
void
Main
(
bool
use_gpu
,
bool
use_trt
)
{
void
Main
(
bool
use_gpu
)
{
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
if
(
!
use_trt
)
{
NativeConfig
config
;
NativeConfig
config
;
config
.
param_file
=
FLAGS_modeldir
+
"/__params__"
;
config
.
param_file
=
FLAGS_modeldir
+
"/__params__"
;
config
.
prog_file
=
FLAGS_modeldir
+
"/__model__"
;
config
.
prog_file
=
FLAGS_modeldir
+
"/__model__"
;
config
.
use_gpu
=
use_gpu
;
config
.
use_gpu
=
use_gpu
;
config
.
device
=
0
;
config
.
device
=
0
;
if
(
FLAGS_use_gpu
)
{
if
(
FLAGS_use_gpu
)
{
config
.
fraction_of_gpu_memory
=
0.1
;
// set by yourself
}
VLOG
(
3
)
<<
"init predictor"
;
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
}
else
{
paddle
::
contrib
::
MixedRTConfig
config
;
config
.
param_file
=
FLAGS_modeldir
+
"/__params__"
;
config
.
prog_file
=
FLAGS_modeldir
+
"/__model__"
;
config
.
use_gpu
=
true
;
config
.
device
=
0
;
config
.
max_batch_size
=
1
;
config
.
fraction_of_gpu_memory
=
0.1
;
// set by yourself
config
.
fraction_of_gpu_memory
=
0.1
;
// set by yourself
predictor
=
CreatePaddlePredictor
<
paddle
::
contrib
::
MixedRTConfig
>
(
config
);
}
}
VLOG
(
3
)
<<
"init predictor"
;
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
VLOG
(
3
)
<<
"begin to process data"
;
VLOG
(
3
)
<<
"begin to process data"
;
// Just a single batch of data.
// Just a single batch of data.
std
::
string
line
;
std
::
string
line
;
...
@@ -159,12 +84,10 @@ void Main(bool use_gpu, bool use_trt) {
...
@@ -159,12 +84,10 @@ void Main(bool use_gpu, bool use_trt) {
int
main
(
int
argc
,
char
**
argv
)
{
int
main
(
int
argc
,
char
**
argv
)
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_use_gpu
&&
FLAGS_use_trt
)
{
if
(
FLAGS_use_gpu
)
{
paddle
::
demo
::
Main
(
true
/*use_gpu*/
,
true
);
paddle
::
demo
::
Main
(
true
/*use_gpu*/
);
}
else
if
(
FLAGS_use_gpu
)
{
paddle
::
demo
::
Main
(
true
/*use_gpu*/
,
false
);
}
else
{
}
else
{
paddle
::
demo
::
Main
(
false
/*use_gpu*/
,
false
/*use_tensorrt*/
);
paddle
::
demo
::
Main
(
false
/*use_gpu*/
);
}
}
return
0
;
return
0
;
}
}
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
38612695
# Add TRT tests
# Add TRT tests
nv_library
(
tensorrt_converter
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc
DEPS tensorrt_engine operator scope framework_proto op_registry
)
DEPS tensorrt_engine operator scope framework_proto op_registry
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
@@ -26,6 +26,8 @@ nv_test(test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
...
@@ -26,6 +26,8 @@ nv_test(test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine batch_norm_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine batch_norm_op SERIAL
)
nv_test
(
test_trt_concat_op SRCS test_concat_op.cc concat_op.cc
nv_test
(
test_trt_concat_op SRCS test_concat_op.cc concat_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine concat_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine concat_op SERIAL
)
nv_test
(
test_trt_dropout_op SRCS test_dropout_op.cc dropout_op.cc
nv_test
(
test_trt_dropout_op SRCS test_dropout_op.cc dropout_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine dropout_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine dropout_op SERIAL
)
nv_test
(
test_trt_pad_op SRCS test_pad_op.cc pad_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine pad_op SERIAL
)
paddle/fluid/inference/tensorrt/convert/pad_op.cc
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* PadOp.
*/
class
PadOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid transpose op to tensorrt tranpose layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
const
float
pad_value
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"pad_value"
));
nvinfer1
::
Dims
input_shape
=
input
->
getDimensions
();
int
nbDims
=
input_shape
.
nbDims
;
int
pad_size
=
static_cast
<
int
>
(
paddings
.
size
());
PADDLE_ENFORCE_GE
(
nbDims
,
2
);
PADDLE_ENFORCE_EQ
((
nbDims
+
1
)
*
2
,
pad_size
);
PADDLE_ENFORCE
(
pad_value
==
0.0
,
"The pad layer of TRT only support zero."
);
nvinfer1
::
DimsHW
pre_pad
(
paddings
[
pad_size
-
4
],
paddings
[
pad_size
-
2
]);
nvinfer1
::
DimsHW
post_pad
(
paddings
[
pad_size
-
3
],
paddings
[
pad_size
-
1
]);
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Padding
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input
),
pre_pad
,
post_pad
);
PADDLE_ENFORCE
(
layer
!=
nullptr
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
layer
->
setName
((
"scale (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
engine_
->
DeclareOutput
(
output_name
);
}
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
pad
,
PadOpConverter
);
paddle/fluid/inference/tensorrt/convert/test_pad_op.cc
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
TEST
(
PadConverter
,
main
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"pad-X"
,
nvinfer1
::
Dims3
(
3
,
2
,
2
));
validator
.
DeclOutputVar
(
"pad-Out"
,
nvinfer1
::
Dims3
(
3
,
3
,
5
));
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"pad"
);
desc
.
SetInput
(
"X"
,
{
"pad-X"
});
desc
.
SetOutput
(
"Out"
,
{
"pad-Out"
});
std
::
vector
<
int
>
paddings
=
{
0
,
0
,
0
,
0
,
0
,
1
,
1
,
2
};
float
pad_value
=
0.0
;
desc
.
SetAttr
(
"paddings"
,
paddings
);
desc
.
SetAttr
(
"pad_value"
,
pad_value
);
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
2
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
pad
);
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
38612695
...
@@ -230,7 +230,7 @@ if(WITH_DISTRIBUTE)
...
@@ -230,7 +230,7 @@ if(WITH_DISTRIBUTE)
op_library
(
${
dist_op
}
DEPS
${
DISTRIBUTE_DEPS
}
)
op_library
(
${
dist_op
}
DEPS
${
DISTRIBUTE_DEPS
}
)
set_source_files_properties
(
${
dist_op
}
.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
${
dist_op
}
.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
endforeach
()
endforeach
()
#set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
#set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
#cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op
#cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op
# listen_and_serv_op sum_op executor SERIAL)
# listen_and_serv_op sum_op executor SERIAL)
...
@@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
...
@@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
endif
()
endif
()
op_library
(
clip_by_norm_op DEPS selected_rows_functor selected_rows
)
op_library
(
sum_op DEPS selected_rows_functor
)
op_library
(
sum_op DEPS selected_rows_functor
)
op_library
(
sgd_op DEPS selected_rows_functor
)
op_library
(
sgd_op DEPS selected_rows_functor
)
op_library
(
print_op DEPS lod_tensor
)
op_library
(
print_op DEPS lod_tensor
)
...
...
paddle/fluid/operators/adadelta_op.cc
浏览文件 @
38612695
...
@@ -18,6 +18,7 @@ namespace paddle {
...
@@ -18,6 +18,7 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
class
AdadeltaOp
:
public
framework
::
OperatorWithKernel
{
class
AdadeltaOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -31,6 +32,16 @@ class AdadeltaOp : public framework::OperatorWithKernel {
...
@@ -31,6 +32,16 @@ class AdadeltaOp : public framework::OperatorWithKernel {
"Input(AvgSquaredGrad) of AdadeltaOp should not be null."
);
"Input(AvgSquaredGrad) of AdadeltaOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AvgSquaredUpdate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AvgSquaredUpdate"
),
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null."
);
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdadeltaOp should not be null."
);
"Output(ParamOut) of AdadeltaOp should not be null."
);
...
@@ -56,6 +67,7 @@ class AdadeltaOp : public framework::OperatorWithKernel {
...
@@ -56,6 +67,7 @@ class AdadeltaOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"AvgSquaredGradOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredGradOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredUpdateOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredUpdateOut"
,
param_dim
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
auto
input_data_type
=
...
...
paddle/fluid/operators/adadelta_op.h
浏览文件 @
38612695
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
AdadeltaOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdadeltaOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
avg_squared_grad_out_tensor
=
auto
avg_squared_grad_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredGradOut"
);
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredGradOut"
);
...
...
paddle/fluid/operators/adagrad_op.h
浏览文件 @
38612695
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -21,25 +22,31 @@ namespace operators {
...
@@ -21,25 +22,31 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
SparseAdagradFunctor
{
struct
SparseAdagradFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
);
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
AdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
auto
*
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
auto
*
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
...
@@ -47,16 +54,16 @@ class AdagradOpKernel : public framework::OpKernel<T> {
...
@@ -47,16 +54,16 @@ class AdagradOpKernel : public framework::OpKernel<T> {
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
moment_out
.
device
(
*
place
)
=
moment
+
grad
*
grad
;
moment_out
.
device
(
*
place
)
=
moment
+
grad
*
grad
;
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()))
{
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
param_out
.
device
(
*
place
)
=
param_out
.
device
(
*
place
)
=
param
-
lr
[
0
]
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
param
-
lr
[
0
]
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
}
else
{
}
else
{
...
@@ -66,10 +73,10 @@ class AdagradOpKernel : public framework::OpKernel<T> {
...
@@ -66,10 +73,10 @@ class AdagradOpKernel : public framework::OpKernel<T> {
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
}
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
param_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_tensor
,
param_out_tensor
);
PADDLE_ENFORCE_EQ
(
param_tensor
,
param_out_tensor
);
auto
*
moment_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
);
auto
*
moment_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
);
PADDLE_ENFORCE_EQ
(
moment_tensor
,
moment_out_tensor
);
PADDLE_ENFORCE_EQ
(
moment_tensor
,
moment_out_tensor
);
SparseAdagradFunctor
<
DeviceContext
,
T
>
functor
;
SparseAdagradFunctor
<
DeviceContext
,
T
>
functor
;
...
...
paddle/fluid/operators/adam_op.h
浏览文件 @
38612695
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/platform/for_range.h"
...
@@ -199,23 +200,9 @@ struct SparseAdamFunctor {
...
@@ -199,23 +200,9 @@ struct SparseAdamFunctor {
row_numel_
(
row_numel
),
row_numel_
(
row_numel
),
row_count_
(
row_count
)
{}
row_count_
(
row_count
)
{}
inline
HOSTDEVICE
int64_t
BinarySearchInRows
(
int64_t
row
)
const
{
int64_t
beg
=
0
,
end
=
row_count_
-
1
;
while
(
beg
<=
end
)
{
auto
mid
=
((
beg
+
end
)
>>
1
);
if
(
rows_
[
mid
]
==
row
)
return
mid
;
else
if
(
rows_
[
mid
]
<
row
)
beg
=
mid
+
1
;
else
end
=
mid
-
1
;
}
return
-
1
;
}
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
inline
HOSTDEVICE
void
operator
()(
size_t
i
)
const
{
int64_t
row
=
i
/
row_numel_
;
auto
row_idx
=
auto
row_idx
=
BinarySearchInRows
(
row
);
math
::
BinarySearch
<
int64_t
>
(
rows_
,
row_count_
,
i
/
row_numel_
);
T
g
=
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
T
g
=
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
i
%
row_numel_
]
:
0
;
// The following code is the same as dense
// The following code is the same as dense
...
@@ -244,6 +231,12 @@ template <typename DeviceContext, typename T>
...
@@ -244,6 +231,12 @@ template <typename DeviceContext, typename T>
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdamOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
operators
::
detail
::
Ref
;
using
paddle
::
operators
::
detail
::
Ref
;
...
...
paddle/fluid/operators/adamax_op.cc
浏览文件 @
38612695
...
@@ -35,6 +35,16 @@ class AdamaxOp : public framework::OperatorWithKernel {
...
@@ -35,6 +35,16 @@ class AdamaxOp : public framework::OperatorWithKernel {
"Input(LearningRate) of AdamaxOp should not be null."
);
"Input(LearningRate) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
"Input(Beta1Pow) of AdamaxOp should not be null."
);
"Input(Beta1Pow) of AdamaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdamaxOp should not be null."
);
"Output(ParamOut) of AdamaxOp should not be null."
);
...
...
paddle/fluid/operators/adamax_op.h
浏览文件 @
38612695
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
AdamaxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AdamaxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
...
...
paddle/fluid/operators/clip_by_norm_op.h
浏览文件 @
38612695
...
@@ -16,12 +16,15 @@ limitations under the License. */
...
@@ -16,12 +16,15 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
...
@@ -31,9 +34,40 @@ class ClipByNormKernel : public framework::OpKernel<T> {
...
@@ -31,9 +34,40 @@ class ClipByNormKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max_norm
=
context
.
Attr
<
T
>
(
"max_norm"
);
auto
max_norm
=
context
.
Attr
<
T
>
(
"max_norm"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
in_var
=
context
.
InputVar
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
*
output
=
nullptr
;
const
Tensor
*
input
=
nullptr
;
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
input
=
context
.
Input
<
Tensor
>
(
"X"
);
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
else
if
(
in_var
->
IsType
<
SelectedRows
>
())
{
auto
*
x
=
context
.
Input
<
SelectedRows
>
(
"X"
);
// merge ids in selected rows first
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
SelectedRows
*
merged_input
=
const_cast
<
framework
::
Scope
&>
(
context
.
scope
())
.
Var
()
->
GetMutable
<
SelectedRows
>
();
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
merged_input
);
input
=
&
(
merged_input
->
value
());
SelectedRows
*
output_selected_rows
=
context
.
Output
<
SelectedRows
>
(
"Out"
);
output_selected_rows
->
set_rows
(
merged_input
->
rows
());
output_selected_rows
->
set_height
(
merged_input
->
height
());
output
=
output_selected_rows
->
mutable_value
();
output
->
Resize
(
merged_input
->
value
().
dims
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
else
{
PADDLE_THROW
(
"Unexpected branch, input variable type is %s"
,
in_var
->
Type
().
name
());
}
PADDLE_ENFORCE_NOT_NULL
(
input
);
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
out
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
out
=
EigenVector
<
T
>::
Flatten
(
*
output
);
...
...
paddle/fluid/operators/decayed_adagrad_op.cc
浏览文件 @
38612695
...
@@ -32,6 +32,16 @@ class DecayedAdagradOp : public framework::OperatorWithKernel {
...
@@ -32,6 +32,16 @@ class DecayedAdagradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of DecayedAdagradOp should not be null."
);
"Input(LearningRate) of DecayedAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of DecayedAdagradOp should not be null."
);
"Output(ParamOut) of DecayedAdagradOp should not be null."
);
...
...
paddle/fluid/operators/decayed_adagrad_op.h
浏览文件 @
38612695
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
...
@@ -23,6 +23,17 @@ template <typename DeviceContext, typename T>
class
DecayedAdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
DecayedAdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
38612695
...
@@ -70,6 +70,12 @@ class FillConstantOp : public framework::OperatorBase {
...
@@ -70,6 +70,12 @@ class FillConstantOp : public framework::OperatorBase {
}
}
};
};
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
};
class
FillConstantOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
FillConstantOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
...
@@ -102,4 +108,5 @@ Fill up a variable with specified constant value.
...
@@ -102,4 +108,5 @@ Fill up a variable with specified constant value.
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fill_constant
,
ops
::
FillConstantOp
,
REGISTER_OPERATOR
(
fill_constant
,
ops
::
FillConstantOp
,
ops
::
FillConstantInferShape
,
ops
::
FillConstantOpMaker
,
ops
::
FillConstantInferShape
,
ops
::
FillConstantOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
FillConstantOpVarTypeInference
);
paddle/fluid/operators/ftrl_op.cc
浏览文件 @
38612695
...
@@ -34,6 +34,16 @@ class FTRLOp : public framework::OperatorWithKernel {
...
@@ -34,6 +34,16 @@ class FTRLOp : public framework::OperatorWithKernel {
"Input(Grad) of FTRL should not be null."
);
"Input(Grad) of FTRL should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of FTRL should not be null."
);
"Input(LearningRate) of FTRL should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of FTRL should not be null."
);
"Output(ParamOut) of FTRL should not be null."
);
...
...
paddle/fluid/operators/ftrl_op.h
浏览文件 @
38612695
...
@@ -28,6 +28,17 @@ template <typename DeviceContext, typename T>
...
@@ -28,6 +28,17 @@ template <typename DeviceContext, typename T>
class
FTRLOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FTRLOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Grad"
).
front
(),
grad_var
->
Type
().
name
());
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
*
sq_accum_out
=
ctx
.
Output
<
Tensor
>
(
"SquaredAccumOut"
);
auto
*
sq_accum_out
=
ctx
.
Output
<
Tensor
>
(
"SquaredAccumOut"
);
auto
*
lin_accum_out
=
ctx
.
Output
<
Tensor
>
(
"LinearAccumOut"
);
auto
*
lin_accum_out
=
ctx
.
Output
<
Tensor
>
(
"LinearAccumOut"
);
...
...
paddle/fluid/operators/isfinite_op.cc
浏览文件 @
38612695
...
@@ -60,7 +60,7 @@ class OverflowOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -60,7 +60,7 @@ class OverflowOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) 1-dim tensor, contains a bool scalar. The output "
"(Tensor) 1-dim tensor, contains a bool scalar. The output "
"tensor of overflow operator."
);
"tensor of overflow operator."
);
AddComment
(
string
::
Sprintf
(
R"DOC(
AddComment
(
string
::
Sprintf
(
R"DOC(
Overflow operator.
Overflow
%s
operator.
$$Out = any(X)$$
$$Out = any(X)$$
...
@@ -69,6 +69,8 @@ Out = Inf if any X contains Inf,
...
@@ -69,6 +69,8 @@ Out = Inf if any X contains Inf,
Out = Nan if any X contains Nan,
Out = Nan if any X contains Nan,
Out = 0 if no Inf/Nan detected.
Out = 0 if no Inf/Nan detected.
If X contains both Inf/Nan, it will return the first indicator it meeted.
If X contains both Inf/Nan, it will return the first indicator it meeted.
%s
)DOC"
,
)DOC"
,
GetName
(),
GetComments
()));
GetName
(),
GetComments
()));
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
38612695
...
@@ -3,8 +3,8 @@ add_subdirectory(detail)
...
@@ -3,8 +3,8 @@ add_subdirectory(detail)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
function
(
math_library TARGET
)
function
(
math_library TARGET
)
# math_library is a function to create math library.
# math_library is a function to create math library.
# The interface is the same as cc_library.
# The interface is the same as cc_library.
# But it handle split GPU/CPU code and link some common library.
# But it handle split GPU/CPU code and link some common library.
set
(
cc_srcs
)
set
(
cc_srcs
)
set
(
cu_srcs
)
set
(
cu_srcs
)
...
@@ -53,7 +53,7 @@ cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context)
...
@@ -53,7 +53,7 @@ cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context)
math_library
(
math_function DEPS blas
)
math_library
(
math_function DEPS blas
)
math_library
(
maxouting
)
math_library
(
maxouting
)
math_library
(
pooling
)
math_library
(
pooling
)
math_library
(
selected_rows_functor DEPS selected_rows math_function
)
math_library
(
selected_rows_functor DEPS selected_rows math_function
blas
)
math_library
(
sequence2batch
)
math_library
(
sequence2batch
)
math_library
(
sequence_padding
)
math_library
(
sequence_padding
)
math_library
(
sequence_pooling DEPS math_function
)
math_library
(
sequence_pooling DEPS math_function
)
...
...
paddle/fluid/
framework/ir/conv_bias_mkldnn_fuse_pass
.h
→
paddle/fluid/
operators/math/algorithm
.h
浏览文件 @
38612695
...
@@ -11,24 +11,34 @@
...
@@ -11,24 +11,34 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#pragma once
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include <algorithm>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include <cstdint> // for int64_t
#include "paddle/fluid/framework/ir/pass.h"
#include <numeric>
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
operators
{
namespace
ir
{
namespace
math
{
/*
* Fuse the Conv and Elementwise_add to a ConvBiasOp.
template
<
typename
T
>
*/
HOSTDEVICE
inline
int64_t
BinarySearch
(
const
T
*
x
,
int64_t
num
,
const
T
&
val
)
{
class
ConvBiasFusePass
:
public
FusePassBase
{
int64_t
beg
=
0
,
end
=
num
-
1
;
public:
while
(
beg
<=
end
)
{
virtual
~
ConvBiasFusePass
()
{}
auto
mid
=
((
beg
+
end
)
>>
1
);
if
(
x
[
mid
]
==
val
)
return
mid
;
else
if
(
x
[
mid
]
<
val
)
beg
=
mid
+
1
;
else
end
=
mid
-
1
;
}
return
-
1
;
}
protected:
}
// namespace math
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
}
// namespace operators
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
38612695
...
@@ -46,17 +46,20 @@ __forceinline__ __device__ unsigned warp_id() {
...
@@ -46,17 +46,20 @@ __forceinline__ __device__ unsigned warp_id() {
return
ret
;
return
ret
;
}
}
#define ARG_DEFINE_KernelDepthwiseConv \
const T *const input_data, const T *const filter_data, const int batch_size, \
const int output_channels, const int output_height, \
const int output_width, const int input_channels, \
const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, T *const output_data
// A Cuda kernel to compute the depthwise convolution forward pass
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
// in NCHW format.
template
<
typename
T
>
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConv
(
__device__
__inline__
void
KernelDepthwiseConv
(
ARG_DEFINE_KernelDepthwiseConv
)
{
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
output_data
)
{
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
batch
=
blockIdx
.
y
;
...
@@ -97,42 +100,105 @@ __device__ __inline__ void KernelDepthwiseConv(
...
@@ -97,42 +100,105 @@ __device__ __inline__ void KernelDepthwiseConv(
}
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
template
<
typename
T
,
int
c_filter
>
__global__
void
KernelDepthwiseConvSp
(
__device__
__inline__
void
KernelDepthwiseConvCFilter
(
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
ARG_DEFINE_KernelDepthwiseConv
)
{
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
kWeghtSize
=
c_filter
*
c_filter
;
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
T
r_weight
[
kWeghtSize
];
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
batch
=
blockIdx
.
y
;
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
c_out
=
blockIdx
.
x
;
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
T
*
weight
=
filter_data
+
c_out
*
c_filter
*
c_filter
;
const
int
dilate_width
,
T
*
const
output_data
)
{
for
(
int
i
=
0
;
i
<
c_filter
*
c_filter
;
i
++
)
r_weight
[
i
]
=
weight
[
i
];
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
output_height
,
output_width
,
input_channels
,
const
int
batch
=
blockIdx
.
y
;
input_height
,
input_width
,
c_filter_multiplier
,
const
int
c_out
=
blockIdx
.
x
;
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
const
int
c_in
=
c_out
/
filter_multiplier
;
dilate_width
,
output_data
);
T
value
=
0
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
h_in_start
+
c_filter
*
dilate_height
;
const
int
w_in_end
=
w_in_start
+
c_filter
*
dilate_width
;
const
int
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
for
(
int
h_in
=
h_in_start
,
h_f
=
0
;
h_f
<
c_filter
;
h_in
+=
dilate_height
,
h_f
++
)
{
for
(
int
w_in
=
w_in_start
,
w_f
=
0
;
w_f
<
c_filter
;
w_in
+=
dilate_width
,
w_f
++
)
{
if
(
h_in
>=
0
&&
h_in
<
input_height
&&
w_in
>=
0
&&
w_in
<
input_width
)
{
const
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
input_data
[
offset
];
}
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
output_data
[
index
]
=
value
;
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
>
__global__
void
KernelDepthwiseConvSp
(
ARG_DEFINE_KernelDepthwiseConv
)
{
if
(
c_filter_multiplier
==
0
)
{
if
(
c_filter
==
-
1
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
KernelDepthwiseConvCFilter
<
T
,
c_filter
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
}
else
{
if
(
c_filter
==
-
1
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
KernelDepthwiseConvCFilter
<
T
,
c_filter
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
}
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
#define ARG_DEFINE_KernelDepthwiseConvInputGrad \
const T *const output_grad_data, const T *const filter_data, \
const int batch_size, const int output_channels, \
const int output_height, const int output_width, \
const int input_channels, const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, \
T *const input_grad_data
template
<
typename
T
>
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConvInputGrad
(
__device__
__inline__
void
KernelDepthwiseConvInputGrad
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
batch
=
blockIdx
.
y
;
...
@@ -184,15 +250,67 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
...
@@ -184,15 +250,67 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
}
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
template
<
typename
T
,
int
c_filter
,
int
c_filter_multiplier
>
__device__
__inline__
void
KernelDepthwiseConvInputGradCFilter
(
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
kWeghtSize
=
c_filter
*
c_filter
*
c_filter_multiplier
+
1
;
T
r_weight
[
kWeghtSize
];
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
for
(
int
c_i
=
0
;
c_i
<
filter_multiplier
;
c_i
++
)
{
int
c_out
=
c_in
*
filter_multiplier
+
c_i
;
const
T
*
weight
=
filter_data
+
c_out
*
c_filter
*
c_filter
;
for
(
int
i
=
0
;
i
<
c_filter
*
c_filter
;
i
++
)
r_weight
[
i
+
c_i
*
c_filter
*
c_filter
]
=
weight
[
c_filter
*
c_filter
-
i
-
1
];
}
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
int
h_out_start
=
h_in
-
(
c_filter
-
1
)
*
dilate_height
+
padding_height
;
int
w_out_start
=
w_in
-
(
c_filter
-
1
)
*
dilate_width
+
padding_width
;
T
value
=
0
;
for
(
int
c_i
=
0
;
c_i
<
filter_multiplier
;
c_i
++
)
{
int
c_out
=
c_in
*
filter_multiplier
+
c_i
;
for
(
int
h_out
=
h_out_start
,
h_f
=
0
;
h_f
<
c_filter
;
h_out
+=
dilate_height
,
h_f
++
)
{
for
(
int
w_out
=
w_out_start
,
w_f
=
0
;
w_f
<
c_filter
;
w_out
+=
dilate_width
,
w_f
++
)
{
int
s_h_out
=
h_out
/
stride_height
;
int
s_w_out
=
w_out
/
stride_width
;
if
(
h_out
%
stride_height
==
0
&&
w_out
%
stride_width
==
0
&&
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
const
int
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
output_width
+
s_w_out
;
value
+=
output_grad_data
[
output_grad_offset
]
*
r_weight
[
h_f
*
c_filter
+
w_f
+
c_i
*
c_filter
*
c_filter
];
}
}
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
input_grad_data
[
index
]
=
value
;
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
>
__global__
void
KernelDepthwiseConvInputGradSp
(
__global__
void
KernelDepthwiseConvInputGradSp
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
if
(
c_filter_multiplier
==
0
)
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConvInputGrad
<
T
>
(
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
...
@@ -200,13 +318,20 @@ __global__ void KernelDepthwiseConvInputGradSp(
...
@@ -200,13 +318,20 @@ __global__ void KernelDepthwiseConvInputGradSp(
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
dilate_width
,
input_grad_data
);
else
else
if
(
c_filter
==
-
1
)
KernelDepthwiseConvInputGrad
<
T
>
(
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
input_grad_data
);
else
KernelDepthwiseConvInputGradCFilter
<
T
,
c_filter
,
c_filter_multiplier
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
}
}
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
...
@@ -325,12 +450,14 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
...
@@ -325,12 +450,14 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride
)
\
#define check_case(c_filter_multiplier, c_stride
, c_filter)
\
if (c_filter_multiplier == 0 || \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
stride_height == stride_width && stride_height == c_stride && \
KernelDepthwiseConvSp<T, c_filter_multiplier, \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_stride><<<grid, threads, 0, context.stream()>>>( \
c_filter == -1)) { \
KernelDepthwiseConvSp<T, c_filter_multiplier, c_stride, \
c_filter><<<grid, threads, 0, context.stream()>>>( \
input_data, filter_data, batch_size, output_channels, output_height, \
input_data, filter_data, batch_size, output_channels, output_height, \
output_width, input_channels, input_height, input_width, \
output_width, input_channels, input_height, input_width, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
...
@@ -338,11 +465,17 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
...
@@ -338,11 +465,17 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dilate_width, output_data); \
dilate_width, output_data); \
return; \
return; \
}
}
check_case
(
1
,
1
);
check_case
(
1
,
1
,
3
);
check_case
(
1
,
2
);
check_case
(
1
,
1
,
5
);
// NOTE(liangdun): 0,0 for other case
check_case
(
1
,
1
,
-
1
);
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
1
,
2
,
3
);
check_case
(
0
,
0
);
check_case
(
1
,
2
,
5
);
check_case
(
1
,
2
,
-
1
);
check_case
(
0
,
0
,
3
);
check_case
(
0
,
0
,
5
);
check_case
(
0
,
0
,
-
1
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
#undef check_case
}
}
};
};
...
@@ -384,13 +517,15 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -384,13 +517,15 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dim3
grid
(
input_channels
,
batch_size
,
1
);
dim3
grid
(
input_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride
)
\
#define check_case(c_filter_multiplier, c_stride
, c_filter)
\
if (c_filter_multiplier == 0 || \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
stride_height == stride_width && stride_height == c_stride && \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
KernelDepthwiseConvInputGradSp< \
KernelDepthwiseConvInputGradSp< \
T, c_filter_multiplier,
\
T, c_filter_multiplier,
c_stride,
\
c_
stride
><<<grid, threads, 0, context.stream()>>>( \
c_
filter
><<<grid, threads, 0, context.stream()>>>( \
output_grad_data, filter_data, batch_size, output_channels, \
output_grad_data, filter_data, batch_size, output_channels, \
output_height, output_width, input_channels, input_height, \
output_height, output_width, input_channels, input_height, \
input_width, filter_multiplier, ksize_height, ksize_width, \
input_width, filter_multiplier, ksize_height, ksize_width, \
...
@@ -398,11 +533,21 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -398,11 +533,21 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dilate_height, dilate_width, input_grad_data); \
dilate_height, dilate_width, input_grad_data); \
return; \
return; \
}
}
check_case
(
1
,
1
);
check_case
(
1
,
1
,
3
);
check_case
(
1
,
2
);
check_case
(
1
,
1
,
5
);
// NOTE(liangdun): 0,0 for other case
check_case
(
1
,
1
,
-
1
);
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
1
,
2
,
3
);
check_case
(
0
,
0
);
check_case
(
1
,
2
,
5
);
check_case
(
1
,
2
,
-
1
);
check_case
(
2
,
1
,
3
);
check_case
(
2
,
1
,
5
);
check_case
(
2
,
1
,
-
1
);
check_case
(
2
,
2
,
3
);
check_case
(
2
,
2
,
5
);
check_case
(
2
,
2
,
-
1
);
check_case
(
0
,
0
,
-
1
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
#undef check_case
}
}
};
};
...
...
paddle/fluid/operators/math/selected_rows_functor.cc
浏览文件 @
38612695
...
@@ -12,10 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,10 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <map>
#include <set>
#include <set>
#include <vector>
#include <vector>
#include "paddle/fluid/operators/math/
math_function
.h"
#include "paddle/fluid/operators/math/
blas
.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -150,6 +151,45 @@ template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
...
@@ -150,6 +151,45 @@ template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template
struct
SelectedRowsAddTo
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
SelectedRowsAddTo
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
SelectedRowsAddTo
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
struct
SelectedRowsAddTo
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
<
typename
T
>
struct
SelectedRowsSumTo
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
std
::
vector
<
framework
::
SelectedRows
*>&
input1
,
const
std
::
vector
<
int64_t
>&
input2_offsets
,
framework
::
SelectedRows
*
input2
)
{
// Ensure all selected rows have the same height
size_t
size
=
0u
;
for
(
auto
iter
=
input1
.
begin
();
iter
!=
input1
.
end
();
++
iter
)
{
auto
&
in_rows
=
(
*
iter
)
->
rows
();
size
+=
in_rows
.
end
()
-
in_rows
.
begin
();
auto
in1_height
=
(
*
iter
)
->
height
();
PADDLE_ENFORCE_EQ
(
in1_height
,
input2
->
height
());
}
// concat rows
std
::
vector
<
int64_t
>
in2_rows
;
in2_rows
.
reserve
(
in2_rows
.
size
()
+
size
);
for
(
auto
iter
=
input1
.
begin
();
iter
!=
input1
.
end
();
++
iter
)
{
const
framework
::
Vector
<
int64_t
>&
in_rows
=
(
*
iter
)
->
rows
();
in2_rows
.
insert
(
in2_rows
.
end
(),
in_rows
.
begin
(),
in_rows
.
end
());
}
input2
->
set_rows
(
in2_rows
);
auto
*
in2_value
=
input2
->
mutable_value
();
auto
*
in2_data
=
in2_value
->
data
<
T
>
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
size_t
offset
=
0u
;
for
(
size_t
i
=
0u
;
i
!=
input1
.
size
();
++
i
)
{
auto
&
in_value
=
input1
[
i
]
->
value
();
const
auto
*
in_data
=
in_value
.
data
<
T
>
();
offset
+=
input2_offsets
[
i
];
blas
.
VCOPY
(
in_value
.
numel
(),
in_data
,
in2_data
+
offset
);
}
}
};
template
struct
SelectedRowsSumTo
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
SelectedRowsSumTo
<
platform
::
CPUDeviceContext
,
double
>;
template
<
typename
T
>
template
<
typename
T
>
struct
SelectedRowsAddToTensor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
SelectedRowsAddToTensor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
...
@@ -207,35 +247,45 @@ struct MergeAdd<platform::CPUDeviceContext, T> {
...
@@ -207,35 +247,45 @@ struct MergeAdd<platform::CPUDeviceContext, T> {
const
framework
::
SelectedRows
&
input
,
const
framework
::
SelectedRows
&
input
,
framework
::
SelectedRows
*
output
)
{
framework
::
SelectedRows
*
output
)
{
framework
::
SelectedRows
&
out
=
*
output
;
framework
::
SelectedRows
&
out
=
*
output
;
auto
input_rows
=
input
.
rows
();
std
::
vector
<
int64_t
>
input_rows
(
input
.
rows
());
std
::
set
<
int64_t
>
row_set
(
input_rows
.
begin
(),
input_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
input_width
=
input
.
value
().
dims
()[
1
];
std
::
map
<
int64_t
,
std
::
vector
<
int64_t
>>
merge_row_map
;
out
.
set_rows
(
merge_rows
);
for
(
size_t
i
=
0
;
i
<
input_rows
.
size
();
++
i
)
{
merge_row_map
[
input_rows
[
i
]].
push_back
(
i
);
}
std
::
vector
<
int64_t
>
merge_rows
(
merge_row_map
.
size
());
size_t
idx
=
0
;
int64_t
input_width
=
input
.
value
().
dims
()[
1
];
out
.
set_height
(
input
.
height
());
out
.
set_height
(
input
.
height
());
out
.
mutable_value
()
->
mutable_data
<
T
>
(
T
*
out_data
=
out
.
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
context
.
GetPlace
());
context
.
GetPlace
());
const
T
*
in_data
=
input
.
value
().
data
<
T
>
();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
out
.
mutable_value
(),
0.0
);
for
(
auto
&
row_pair
:
merge_row_map
)
{
auto
*
out_ptr
=
out_data
+
idx
*
input_width
;
auto
*
out_data
=
out
.
mutable_value
()
->
data
<
T
>
();
auto
&
rows
=
row_pair
.
second
;
auto
*
input_data
=
input
.
value
().
data
<
T
>
();
merge_rows
[
idx
]
=
row_pair
.
first
;
++
idx
;
for
(
size_t
i
=
0
;
i
<
input_rows
.
size
();
i
++
)
{
// rows.size() is always larger than 0
size_t
out_i
=
FindPos
(
merge_rows
,
input_rows
[
i
]);
std
::
memcpy
(
out_ptr
,
in_data
+
rows
[
0
]
*
input_width
,
for
(
int64_t
j
=
0
;
j
<
input_width
;
j
++
)
{
sizeof
(
T
)
*
input_width
);
out_data
[
out_i
*
input_width
+
j
]
+=
input_data
[
i
*
input_width
+
j
];
for
(
size_t
i
=
1
;
i
<
rows
.
size
();
++
i
)
{
auto
*
in_ptr
=
in_data
+
rows
[
i
]
*
input_width
;
for
(
int64_t
j
=
0
;
j
<
input_width
;
++
j
)
{
out_ptr
[
j
]
+=
in_ptr
[
j
];
}
}
}
}
}
out
.
set_rows
(
merge_rows
);
}
}
};
};
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
int64_t
>;
...
...
paddle/fluid/operators/math/selected_rows_functor.h
浏览文件 @
38612695
...
@@ -12,8 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,8 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <map>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
#define INLINE_FOR2(sizei, sizej) \
#define INLINE_FOR2(sizei, sizej) \
...
@@ -49,6 +55,15 @@ struct SelectedRowsAddTo {
...
@@ -49,6 +55,15 @@ struct SelectedRowsAddTo {
const
int64_t
input2_offset
,
framework
::
SelectedRows
*
input2
);
const
int64_t
input2_offset
,
framework
::
SelectedRows
*
input2
);
};
};
// input2 = [all input in input1] + input2
template
<
typename
DeviceContext
,
typename
T
>
struct
SelectedRowsSumTo
{
void
operator
()(
const
DeviceContext
&
context
,
const
std
::
vector
<
framework
::
SelectedRows
*>&
input1
,
const
std
::
vector
<
int64_t
>&
input2_offsets
,
framework
::
SelectedRows
*
input2
);
};
// input2 = input1 + input2
// input2 = input1 + input2
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
SelectedRowsAddToTensor
{
struct
SelectedRowsAddToTensor
{
...
@@ -70,6 +85,104 @@ struct MergeAdd {
...
@@ -70,6 +85,104 @@ struct MergeAdd {
framework
::
SelectedRows
*
output
);
framework
::
SelectedRows
*
output
);
};
};
template
<
>
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
float
>
{
framework
::
SelectedRows
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
)
{
framework
::
SelectedRows
out
;
(
*
this
)(
context
,
input
,
&
out
);
return
out
;
}
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
framework
::
SelectedRows
*
output
)
{
framework
::
SelectedRows
&
out
=
*
output
;
std
::
vector
<
int64_t
>
input_rows
(
input
.
rows
());
std
::
map
<
int64_t
,
std
::
vector
<
int64_t
>>
merge_row_map
;
for
(
size_t
i
=
0
;
i
<
input_rows
.
size
();
++
i
)
{
merge_row_map
[
input_rows
[
i
]].
push_back
(
i
);
}
std
::
vector
<
int64_t
>
merge_rows
(
merge_row_map
.
size
());
size_t
idx
=
0
;
int64_t
input_width
=
input
.
value
().
dims
()[
1
];
out
.
set_height
(
input
.
height
());
auto
*
out_data
=
out
.
mutable_value
()
->
mutable_data
<
float
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
context
.
GetPlace
());
auto
*
in_data
=
input
.
value
().
data
<
float
>
();
auto
blas
=
GetBlas
<
platform
::
CPUDeviceContext
,
float
>
(
context
);
for
(
auto
&
row_pair
:
merge_row_map
)
{
auto
*
out_ptr
=
out_data
+
idx
*
input_width
;
auto
&
rows
=
row_pair
.
second
;
merge_rows
[
idx
]
=
row_pair
.
first
;
++
idx
;
// rows.size() is always larger than 0
blas
.
VCOPY
(
input_width
,
in_data
+
rows
[
0
]
*
input_width
,
out_ptr
);
for
(
size_t
i
=
1
;
i
<
rows
.
size
();
++
i
)
{
blas
.
AXPY
(
input_width
,
1.
,
in_data
+
rows
[
i
]
*
input_width
,
out_ptr
);
}
}
out
.
set_rows
(
merge_rows
);
}
};
template
<
>
struct
MergeAdd
<
platform
::
CPUDeviceContext
,
double
>
{
framework
::
SelectedRows
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
)
{
framework
::
SelectedRows
out
;
(
*
this
)(
context
,
input
,
&
out
);
return
out
;
}
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
framework
::
SelectedRows
*
output
)
{
framework
::
SelectedRows
&
out
=
*
output
;
std
::
vector
<
int64_t
>
input_rows
(
input
.
rows
());
std
::
map
<
int64_t
,
std
::
vector
<
int64_t
>>
merge_row_map
;
for
(
size_t
i
=
0
;
i
<
input_rows
.
size
();
++
i
)
{
merge_row_map
[
input_rows
[
i
]].
push_back
(
i
);
}
std
::
vector
<
int64_t
>
merge_rows
(
merge_row_map
.
size
());
size_t
idx
=
0
;
int64_t
input_width
=
input
.
value
().
dims
()[
1
];
out
.
set_height
(
input
.
height
());
auto
*
out_data
=
out
.
mutable_value
()
->
mutable_data
<
double
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
input_width
}),
context
.
GetPlace
());
auto
*
in_data
=
input
.
value
().
data
<
double
>
();
auto
blas
=
GetBlas
<
platform
::
CPUDeviceContext
,
double
>
(
context
);
for
(
auto
&
row_pair
:
merge_row_map
)
{
auto
*
out_ptr
=
out_data
+
idx
*
input_width
;
auto
&
rows
=
row_pair
.
second
;
merge_rows
[
idx
]
=
row_pair
.
first
;
++
idx
;
// rows.size() is always larger than 0
blas
.
VCOPY
(
input_width
,
in_data
+
rows
[
0
]
*
input_width
,
out_ptr
);
for
(
size_t
i
=
1
;
i
<
rows
.
size
();
++
i
)
{
blas
.
AXPY
(
input_width
,
1.
,
in_data
+
rows
[
i
]
*
input_width
,
out_ptr
);
}
}
out
.
set_rows
(
merge_rows
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
Add
{
struct
Add
{
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
framework
::
SelectedRows
operator
()(
const
DeviceContext
&
context
,
...
...
paddle/fluid/operators/math/selected_rows_functor_test.cc
浏览文件 @
38612695
...
@@ -219,3 +219,174 @@ TEST(selected_rows_functor, cpu_add_to) {
...
@@ -219,3 +219,174 @@ TEST(selected_rows_functor, cpu_add_to) {
// row9: 2.0 + 3.0
// row9: 2.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
9
*
row_numel
+
6
],
5.0
);
EXPECT_EQ
(
tensor1_data
[
9
*
row_numel
+
6
],
5.0
);
}
}
TEST
(
selected_rows_functor
,
cpu_merge_add_float
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
operators
::
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
functor
;
int64_t
height
=
10
;
int64_t
row_numel
=
10
;
std
::
vector
<
int64_t
>
rows
{
0
,
4
,
4
,
7
};
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
selected_rows
{
new
paddle
::
framework
::
SelectedRows
(
rows
,
height
)};
auto
*
in_value
=
selected_rows
->
mutable_value
();
in_value
->
mutable_data
<
float
>
(
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
rows
.
size
()),
row_numel
}),
cpu_place
);
functor
(
ctx
,
in_value
,
1.0
);
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
output
{
new
paddle
::
framework
::
SelectedRows
()};
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
merge_add_functor
;
merge_add_functor
(
ctx
,
*
selected_rows
,
output
.
get
());
auto
out_height
=
output
->
height
();
EXPECT_EQ
(
out_height
,
height
);
auto
&
out_rows
=
output
->
rows
();
EXPECT_EQ
(
out_rows
[
0
],
0
);
EXPECT_EQ
(
out_rows
[
1
],
4
);
EXPECT_EQ
(
out_rows
[
2
],
7
);
auto
*
out_data
=
output
->
value
().
data
<
float
>
();
EXPECT_EQ
(
out_data
[
0
*
row_numel
],
1.0
);
EXPECT_EQ
(
out_data
[
1
*
row_numel
],
2.0
);
EXPECT_EQ
(
out_data
[
2
*
row_numel
],
1.0
);
}
TEST
(
selected_rows_functor
,
cpu_merge_add_int
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
operators
::
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
functor
;
int64_t
height
=
10
;
int64_t
row_numel
=
10
;
std
::
vector
<
int64_t
>
rows
{
0
,
4
,
4
,
7
};
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
selected_rows
{
new
paddle
::
framework
::
SelectedRows
(
rows
,
height
)};
auto
*
in_value
=
selected_rows
->
mutable_value
();
in_value
->
mutable_data
<
int
>
(
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
rows
.
size
()),
row_numel
}),
cpu_place
);
functor
(
ctx
,
in_value
,
1
);
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
output
{
new
paddle
::
framework
::
SelectedRows
()};
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
merge_add_functor
;
merge_add_functor
(
ctx
,
*
selected_rows
,
output
.
get
());
auto
out_height
=
output
->
height
();
EXPECT_EQ
(
out_height
,
height
);
auto
&
out_rows
=
output
->
rows
();
EXPECT_EQ
(
out_rows
[
0
],
0
);
EXPECT_EQ
(
out_rows
[
1
],
4
);
EXPECT_EQ
(
out_rows
[
2
],
7
);
auto
*
out_data
=
output
->
value
().
data
<
int
>
();
EXPECT_EQ
(
out_data
[
0
*
row_numel
],
1
);
EXPECT_EQ
(
out_data
[
1
*
row_numel
],
2
);
EXPECT_EQ
(
out_data
[
2
*
row_numel
],
1
);
}
TEST
(
selected_rows_functor
,
cpu_sum_to
)
{
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CPUDeviceContext
ctx
(
cpu_place
);
paddle
::
operators
::
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
functor
;
int64_t
height
=
10
;
int64_t
row_numel
=
10
;
std
::
vector
<
int64_t
>
rows1
{
0
,
4
,
7
};
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
selected_rows1
{
new
paddle
::
framework
::
SelectedRows
(
rows1
,
height
)};
auto
*
in1_value
=
selected_rows1
->
mutable_value
();
in1_value
->
mutable_data
<
float
>
(
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
rows1
.
size
()),
row_numel
}),
cpu_place
);
functor
(
ctx
,
in1_value
,
1.0
);
std
::
vector
<
int64_t
>
rows2
{
0
,
5
,
7
,
9
};
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
selected_rows2
{
new
paddle
::
framework
::
SelectedRows
(
rows2
,
height
)};
auto
*
in2_value
=
selected_rows2
->
mutable_value
();
in2_value
->
mutable_data
<
float
>
(
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
rows2
.
size
()),
row_numel
}),
cpu_place
);
functor
(
ctx
,
in2_value
,
2.0
);
std
::
unique_ptr
<
paddle
::
framework
::
SelectedRows
>
output
{
new
paddle
::
framework
::
SelectedRows
()};
output
->
set_height
(
height
);
auto
*
out_value
=
output
->
mutable_value
();
// simplely concat two SelectedRows
out_value
->
mutable_data
<
float
>
(
paddle
::
framework
::
make_ddim
({
7
,
10
}),
cpu_place
);
paddle
::
operators
::
math
::
SelectedRowsSumTo
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
sum_to_functor
;
sum_to_functor
(
ctx
,
std
::
vector
<
paddle
::
framework
::
SelectedRows
*>
(
{
selected_rows1
.
get
(),
selected_rows2
.
get
()}),
std
::
vector
<
int64_t
>
({
0
,
in1_value
->
numel
()}),
output
.
get
());
auto
out_height
=
output
->
height
();
EXPECT_EQ
(
out_height
,
height
);
auto
&
out_rows
=
output
->
rows
();
// input1 rows
EXPECT_EQ
(
out_rows
[
0
],
0
);
EXPECT_EQ
(
out_rows
[
1
],
4
);
EXPECT_EQ
(
out_rows
[
2
],
7
);
// input2 rows
EXPECT_EQ
(
out_rows
[
3
],
0
);
EXPECT_EQ
(
out_rows
[
4
],
5
);
EXPECT_EQ
(
out_rows
[
5
],
7
);
EXPECT_EQ
(
out_rows
[
6
],
9
);
auto
*
out_data
=
output
->
value
().
data
<
float
>
();
// input1 value
EXPECT_EQ
(
out_data
[
0
*
row_numel
+
0
],
1.0
);
EXPECT_EQ
(
out_data
[
0
*
row_numel
+
8
],
1.0
);
EXPECT_EQ
(
out_data
[
1
*
row_numel
+
1
],
1.0
);
EXPECT_EQ
(
out_data
[
2
*
row_numel
+
6
],
1.0
);
// input2 value
EXPECT_EQ
(
out_data
[
3
*
row_numel
+
3
],
2.0
);
EXPECT_EQ
(
out_data
[
3
*
row_numel
+
8
],
2.0
);
EXPECT_EQ
(
out_data
[
4
*
row_numel
+
4
],
2.0
);
EXPECT_EQ
(
out_data
[
5
*
row_numel
+
7
],
2.0
);
EXPECT_EQ
(
out_data
[
6
*
row_numel
+
9
],
2.0
);
std
::
unique_ptr
<
paddle
::
framework
::
Tensor
>
tensor1
{
new
paddle
::
framework
::
Tensor
()};
tensor1
->
mutable_data
<
float
>
(
paddle
::
framework
::
make_ddim
({
height
,
row_numel
}),
cpu_place
);
functor
(
ctx
,
tensor1
.
get
(),
3.0
);
paddle
::
operators
::
math
::
SelectedRowsAddToTensor
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
add_to_tensor_functor
;
add_to_tensor_functor
(
ctx
,
*
output
,
tensor1
.
get
());
auto
*
tensor1_data
=
tensor1
->
data
<
float
>
();
// row0: 1.0 + 2.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
0
*
row_numel
+
0
],
6.0
);
// row1: 3.0
EXPECT_EQ
(
tensor1_data
[
1
*
row_numel
+
1
],
3.0
);
// row4 : 1.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
4
*
row_numel
+
6
],
4.0
);
// row5: 2.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
5
*
row_numel
+
7
],
5.0
);
// row6: 3.0
EXPECT_EQ
(
tensor1_data
[
6
*
row_numel
+
1
],
3.0
);
// row7: 1.0 + 2.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
7
*
row_numel
+
3
],
6.0
);
// row9: 2.0 + 3.0
EXPECT_EQ
(
tensor1_data
[
9
*
row_numel
+
6
],
5.0
);
}
paddle/fluid/operators/math/sequence_pooling.cc
浏览文件 @
38612695
...
@@ -12,9 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,9 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <string>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -180,6 +182,7 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
...
@@ -180,6 +182,7 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
}
}
auto
lod
=
input
.
lod
()[
0
];
auto
lod
=
input
.
lod
()[
0
];
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
Tensor
in_t
=
input
.
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
input
.
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
@@ -191,7 +194,14 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
...
@@ -191,7 +194,14 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
if
(
pooltype
==
"AVERAGE"
)
{
if
(
pooltype
==
"AVERAGE"
)
{
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SUM"
)
{
}
else
if
(
pooltype
==
"SUM"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
if
(
h
>
0
)
{
const
T
*
in_data
=
in_t
.
data
<
T
>
();
T
*
out_data
=
out_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
blas
.
VCOPY
(
w
,
in_data
,
out_data
);
for
(
int64_t
r
=
1
;
r
!=
h
;
++
r
)
{
blas
.
AXPY
(
w
,
1.
,
in_data
+
r
*
w
,
out_data
);
}
}
}
else
if
(
pooltype
==
"SQRT"
)
{
}
else
if
(
pooltype
==
"SQRT"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
std
::
sqrt
(
static_cast
<
T
>
(
h
));
...
@@ -223,6 +233,7 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -223,6 +233,7 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
}
}
auto
lod
=
in_grad
->
lod
()[
0
];
auto
lod
=
in_grad
->
lod
()[
0
];
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
@@ -237,7 +248,11 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -237,7 +248,11 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
if
(
pooltype
==
"AVERAGE"
)
{
if
(
pooltype
==
"AVERAGE"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SUM"
)
{
}
else
if
(
pooltype
==
"SUM"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
const
T
*
out_g_data
=
out_g_t
.
data
<
T
>
();
T
*
in_g_data
=
in_g_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
w
,
out_g_data
,
in_g_data
+
r
*
w
);
}
}
else
if
(
pooltype
==
"SQRT"
)
{
}
else
if
(
pooltype
==
"SQRT"
)
{
in_g_e
.
device
(
place
)
=
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
...
...
paddle/fluid/operators/momentum_op.cc
浏览文件 @
38612695
...
@@ -33,6 +33,11 @@ class MomentumOp : public framework::OperatorWithKernel {
...
@@ -33,6 +33,11 @@ class MomentumOp : public framework::OperatorWithKernel {
"Input(velocity) of Momentum should not be null."
);
"Input(velocity) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of Momentum should not be null."
);
"Input(LearningRate) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of Momentum should not be null."
);
"Output(ParamOut) of Momentum should not be null."
);
...
...
paddle/fluid/operators/reader/blocking_queue.h
浏览文件 @
38612695
...
@@ -31,8 +31,8 @@ class BlockingQueue {
...
@@ -31,8 +31,8 @@ class BlockingQueue {
// is a workaround and a simplified version of framework::Channel as it
// is a workaround and a simplified version of framework::Channel as it
// doesn't support GPU and it implements on buffered blocking queue.
// doesn't support GPU and it implements on buffered blocking queue.
public:
public:
explicit
BlockingQueue
(
size_t
capacity
)
explicit
BlockingQueue
(
size_t
capacity
,
bool
speed_test_mode
=
false
)
:
capacity_
(
capacity
),
closed_
(
false
)
{
:
capacity_
(
capacity
),
speed_test_mode_
(
speed_test_mode
),
closed_
(
false
)
{
PADDLE_ENFORCE_GT
(
PADDLE_ENFORCE_GT
(
capacity_
,
0
,
capacity_
,
0
,
"The capacity of a reader::BlockingQueue must be greater than 0."
);
"The capacity of a reader::BlockingQueue must be greater than 0."
);
...
@@ -72,7 +72,9 @@ class BlockingQueue {
...
@@ -72,7 +72,9 @@ class BlockingQueue {
if
(
!
queue_
.
empty
())
{
if
(
!
queue_
.
empty
())
{
PADDLE_ENFORCE_NOT_NULL
(
elem
);
PADDLE_ENFORCE_NOT_NULL
(
elem
);
*
elem
=
queue_
.
front
();
*
elem
=
queue_
.
front
();
queue_
.
pop_front
();
if
(
LIKELY
(
!
speed_test_mode_
))
{
queue_
.
pop_front
();
}
send_cv_
.
notify_one
();
send_cv_
.
notify_one
();
return
true
;
return
true
;
}
else
{
}
else
{
...
@@ -114,6 +116,7 @@ class BlockingQueue {
...
@@ -114,6 +116,7 @@ class BlockingQueue {
private:
private:
size_t
capacity_
;
size_t
capacity_
;
bool
speed_test_mode_
;
bool
closed_
;
bool
closed_
;
std
::
deque
<
T
>
queue_
;
std
::
deque
<
T
>
queue_
;
...
...
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
浏览文件 @
38612695
...
@@ -33,8 +33,9 @@ class LoDTensorBlockingQueue {
...
@@ -33,8 +33,9 @@ class LoDTensorBlockingQueue {
private:
private:
LoDTensorBlockingQueue
(
size_t
capacity
,
LoDTensorBlockingQueue
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
const
std
::
vector
<
framework
::
DDim
>&
dims
,
:
queue_
(
capacity
),
dims_
(
dims
)
{}
bool
speed_test_mode
=
false
)
:
queue_
(
capacity
,
speed_test_mode
),
dims_
(
dims
)
{}
public:
public:
bool
Push
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
bool
Push
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
...
@@ -69,11 +70,12 @@ class LoDTensorBlockingQueue {
...
@@ -69,11 +70,12 @@ class LoDTensorBlockingQueue {
class
LoDTensorBlockingQueueHolder
{
class
LoDTensorBlockingQueueHolder
{
public:
public:
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
)
{
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
bool
speed_test_mode
=
false
)
{
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
queue_
==
nullptr
,
queue_
==
nullptr
,
"LoDTensorBlockingQueueHolder::InitOnce() can only be called once"
);
"LoDTensorBlockingQueueHolder::InitOnce() can only be called once"
);
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
dims
));
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
dims
,
speed_test_mode
));
}
}
inline
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
GetQueue
()
const
{
inline
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
GetQueue
()
const
{
...
...
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
浏览文件 @
38612695
...
@@ -217,3 +217,27 @@ TEST(BlockingQueue, MyClassTest) {
...
@@ -217,3 +217,27 @@ TEST(BlockingQueue, MyClassTest) {
q
.
Receive
(
&
b
);
q
.
Receive
(
&
b
);
EXPECT_EQ
(
a
.
val_
,
b
.
val_
);
EXPECT_EQ
(
a
.
val_
,
b
.
val_
);
}
}
TEST
(
BlockingQueue
,
speed_test_mode
)
{
size_t
queue_size
=
10
;
BlockingQueue
<
size_t
>
q1
(
queue_size
,
false
);
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q1
.
Send
(
i
);
}
size_t
b
;
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q1
.
Receive
(
&
b
);
EXPECT_EQ
(
b
,
i
);
}
EXPECT_EQ
(
q1
.
Size
(),
0
);
BlockingQueue
<
size_t
>
q2
(
queue_size
,
true
);
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q2
.
Send
(
i
);
}
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q2
.
Receive
(
&
b
);
EXPECT_EQ
(
b
,
0
);
}
EXPECT_EQ
(
q2
.
Size
(),
queue_size
);
}
paddle/fluid/operators/reshape_op.cc
浏览文件 @
38612695
...
@@ -164,7 +164,7 @@ dimension value will be copied from Input(X) at runtime. Note that the index of
...
@@ -164,7 +164,7 @@ dimension value will be copied from Input(X) at runtime. Note that the index of
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
Attr(shape) still should be set correctly to gurantee shape inference in
Attr(shape) still should be set correctly to gurantee shape inference in
compile-time.
compile-time.
)DOC"
);
)DOC"
);
...
@@ -259,7 +259,6 @@ class Reshape2Op : public ReshapeOp {
...
@@ -259,7 +259,6 @@ class Reshape2Op : public ReshapeOp {
:
ReshapeOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
:
ReshapeOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ReshapeOp
::
InferShape
(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) of ReshapeOp should not be null."
);
"Output(XShape) of ReshapeOp should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
@@ -270,6 +269,8 @@ class Reshape2Op : public ReshapeOp {
...
@@ -270,6 +269,8 @@ class Reshape2Op : public ReshapeOp {
}
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
ReshapeOp
::
InferShape
(
ctx
);
}
}
};
};
...
...
paddle/fluid/operators/rmsprop_op.cc
浏览文件 @
38612695
...
@@ -32,6 +32,11 @@ class RmspropOp : public framework::OperatorWithKernel {
...
@@ -32,6 +32,11 @@ class RmspropOp : public framework::OperatorWithKernel {
"Input(Grad) of RmspropOp should not be null."
);
"Input(Grad) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
"Input(Moment) of RmspropOp should not be null."
);
"Input(Moment) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(param_out) of RmspropOp should not be null."
);
"Output(param_out) of RmspropOp should not be null."
);
...
...
paddle/fluid/operators/rmsprop_op.h
浏览文件 @
38612695
...
@@ -13,66 +13,254 @@ See the License for the specific language governing permissions and
...
@@ -13,66 +13,254 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <math.h>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
struct
DenseRmspropGradFunctor
{
inline
explicit
DenseRmspropGradFunctor
(
const
T
*
grad
)
:
grad_
(
grad
)
{}
HOSTDEVICE
inline
T
operator
()(
int64_t
idx
)
const
{
return
grad_
[
idx
];
}
const
T
*
grad_
;
};
template
<
typename
T
>
struct
SparseRmspropGradFunctor
{
inline
SparseRmspropGradFunctor
(
const
T
*
grad
,
const
int64_t
*
rows
,
int64_t
row_numel
,
int64_t
row_count
)
:
grad_
(
grad
),
rows_
(
rows
),
row_numel_
(
row_numel
),
row_count_
(
row_count
)
{}
HOSTDEVICE
inline
T
operator
()(
int64_t
idx
)
const
{
auto
row_idx
=
math
::
BinarySearch
(
rows_
,
row_count_
,
idx
/
row_numel_
);
return
row_idx
>=
0
?
grad_
[
row_idx
*
row_numel_
+
idx
%
row_numel_
]
:
0
;
}
const
T
*
grad_
;
const
int64_t
*
rows_
;
int64_t
row_numel_
;
int64_t
row_count_
;
};
template
<
typename
T
,
typename
GradFunctor
>
struct
UncenteredRmspropFunctor
{
UncenteredRmspropFunctor
(
T
*
param
,
T
*
ms
,
T
*
mom
,
const
T
*
lr
,
T
rho
,
T
epsilon
,
T
momentum
,
const
GradFunctor
&
grad_functor
)
:
param_
(
param
),
ms_
(
ms
),
mom_
(
mom
),
lr_
(
lr
),
rho_
(
rho
),
epsilon_
(
epsilon
),
momentum_
(
momentum
),
grad_functor_
(
grad_functor
)
{}
HOSTDEVICE
inline
void
operator
()(
int64_t
idx
)
const
{
T
g
=
grad_functor_
(
idx
);
T
ms_out
=
rho_
*
ms_
[
idx
]
+
(
1
-
rho_
)
*
g
*
g
;
T
mom_out
=
momentum_
*
mom_
[
idx
]
+
lr_
[
0
]
*
g
/
sqrt
(
ms_out
+
epsilon_
);
param_
[
idx
]
-=
mom_out
;
ms_
[
idx
]
=
ms_out
;
mom_
[
idx
]
=
mom_out
;
}
T
*
param_
;
T
*
ms_
;
T
*
mom_
;
const
T
*
lr_
;
T
rho_
;
T
epsilon_
;
T
momentum_
;
GradFunctor
grad_functor_
;
};
template
<
typename
T
,
typename
GradFunctor
>
struct
CenteredRmspropFunctor
{
CenteredRmspropFunctor
(
T
*
param
,
T
*
ms
,
T
*
mom
,
T
*
mean_grad
,
const
T
*
lr
,
T
rho
,
T
epsilon
,
T
momentum
,
const
GradFunctor
&
grad_functor
)
:
param_
(
param
),
ms_
(
ms
),
mom_
(
mom
),
mean_grad_
(
mean_grad
),
lr_
(
lr
),
rho_
(
rho
),
epsilon_
(
epsilon
),
momentum_
(
momentum
),
grad_functor_
(
grad_functor
)
{}
HOSTDEVICE
inline
void
operator
()(
int64_t
idx
)
const
{
T
g
=
grad_functor_
(
idx
);
T
ms_out
=
rho_
*
ms_
[
idx
]
+
(
1
-
rho_
)
*
g
*
g
;
T
mg_out
=
rho_
*
mean_grad_
[
idx
]
+
(
1
-
rho_
)
*
g
;
T
mom_out
=
momentum_
*
mom_
[
idx
]
+
lr_
[
0
]
*
g
/
sqrt
(
ms_out
-
mg_out
*
mg_out
+
epsilon_
);
param_
[
idx
]
-=
mom_out
;
ms_
[
idx
]
=
ms_out
;
mom_
[
idx
]
=
mom_out
;
mean_grad_
[
idx
]
=
mg_out
;
}
T
*
param_
;
T
*
ms_
;
T
*
mom_
;
T
*
mean_grad_
;
const
T
*
lr_
;
T
rho_
;
T
epsilon_
;
T
momentum_
;
GradFunctor
grad_functor_
;
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
RmspropOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
RmspropOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
using
LoDTensor
=
framework
::
LoDTensor
;
auto
*
moment_out
=
ctx
.
Output
<
Tensor
>
(
"MomentOut"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
auto
*
mean_square_out
=
ctx
.
Output
<
Tensor
>
(
"MeanSquareOut"
);
auto
*
param_out
=
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
);
auto
*
moment_out
=
ctx
.
Output
<
LoDTensor
>
(
"MomentOut"
);
auto
*
mean_square_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanSquareOut"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"Grad"
);
auto
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
rho
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"decay"
));
auto
momentum
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
p_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
ms_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanSquare"
);
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
lr_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
auto
&
mom_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"Moment"
);
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
PADDLE_ENFORCE_EQ
(
&
p_tensor
,
param_out
,
float
rho
=
ctx
.
Attr
<
float
>
(
"decay"
);
"Param and ParamOut must be the same Tensor"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
PADDLE_ENFORCE_EQ
(
&
mom_tensor
,
moment_out
,
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
"Moment and MomentOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
ms_tensor
,
mean_square_out
,
"MeanSquare and MeanSquareOut must be the same Tensor"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
size_t
limit
=
static_cast
<
size_t
>
(
ms_tensor
.
numel
());
if
(
grad_var
->
IsType
<
LoDTensor
>
())
{
auto
&
grad_tensor
=
grad_var
->
Get
<
LoDTensor
>
();
if
(
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
)
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
lr_value
=
lr_tensor
.
data
<
T
>
()[
0
];
auto
p
=
EigenVector
<
T
>::
Flatten
(
p_tensor
);
auto
ms
=
EigenVector
<
T
>::
Flatten
(
ms_tensor
);
auto
g
=
EigenVector
<
T
>::
Flatten
(
grad_tensor
);
auto
mom
=
EigenVector
<
T
>::
Flatten
(
mom_tensor
);
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
mom_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
mg
=
EigenVector
<
T
>::
Flatten
(
mg_tensor
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr_value
*
g
/
(
ms_out
-
mg_out
.
square
()
+
epsilon
).
sqrt
();
}
else
{
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr_value
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
}
p_out
.
device
(
place
)
=
p
-
mom_out
;
}
else
{
DenseRmspropGradFunctor
<
T
>
grad_func
(
grad_tensor
.
data
<
T
>
());
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
else
{
for_range
(
UncenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
}
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
merged_grad
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
dev_ctx
,
grad
,
merged_grad
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
dev_ctx
,
limit
);
const
int64_t
*
rows
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
merged_grad
->
rows
().
CUDAData
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
merged_grad
->
rows
().
data
();
#ifdef PADDLE_WITH_CUDA
}
#endif
auto
&
merged_tensor
=
merged_grad
->
value
();
int64_t
row_count
=
merged_grad
->
rows
().
size
();
int64_t
row_numel
=
merged_tensor
.
numel
()
/
row_count
;
SparseRmspropGradFunctor
<
T
>
grad_func
(
merged_tensor
.
data
<
T
>
(),
rows
,
row_numel
,
row_count
);
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
if
(
centered
)
{
auto
ms
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanSquare"
));
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
lr
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"LearningRate"
));
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
grad
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
auto
mom
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Moment"
));
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
auto
mom_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
rho
,
epsilon
,
momentum
,
grad_func
));
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
static_cast
<
int
>
(
grad
->
numel
()));
}
else
{
for_range
(
UncenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
if
(
centered
)
{
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
auto
mg
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanGrad"
));
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
lr_tensor
.
data
<
T
>
(),
auto
*
mean_grad_out
=
ctx
.
Output
<
Tensor
>
(
"MeanGradOut"
);
rho
,
epsilon
,
momentum
,
grad_func
));
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
-
mg_out
.
square
()
+
epsilon
).
sqrt
();
}
else
{
}
else
{
mom_out
.
device
(
place
)
=
PADDLE_THROW
(
"RMSProp only supports LoDTensor or SelectedRows gradient"
);
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
}
}
p_out
.
device
(
place
)
=
p
-
mom_out
;
}
}
};
};
...
...
paddle/fluid/operators/sequence_concat_op.cc
浏览文件 @
38612695
...
@@ -90,11 +90,13 @@ REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
...
@@ -90,11 +90,13 @@ REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
paddle
::
framework
::
DefaultGradOpDescMaker
<
false
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
false
>
);
template
<
typename
T
>
template
<
typename
T
>
using
Kernel
=
op
::
SeqConcatKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
using
Kernel
=
op
::
SeqConcatKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
REGISTER_OP_CPU_KERNEL
(
sequence_concat
,
Kernel
<
float
>
,
Kernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_concat
,
Kernel
<
float
>
,
Kernel
<
double
>
,
Kernel
<
int64_t
>
);
REGISTER_OPERATOR
(
sequence_concat_grad
,
paddle
::
framework
::
OperatorWithKernel
,
REGISTER_OPERATOR
(
sequence_concat_grad
,
paddle
::
framework
::
OperatorWithKernel
,
op
::
SeqConcatGradShapeInferer
);
op
::
SeqConcatGradShapeInferer
);
template
<
typename
T
>
template
<
typename
T
>
using
GradKernel
=
using
GradKernel
=
op
::
SeqConcatGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
op
::
SeqConcatGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
REGISTER_OP_CPU_KERNEL
(
sequence_concat_grad
,
GradKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
sequence_concat_grad
,
GradKernel
<
float
>
,
GradKernel
<
double
>
);
GradKernel
<
double
>
,
GradKernel
<
int64_t
>
);
paddle/fluid/operators/sequence_unpad_op.cc
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_unpad_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceUnpadOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceUnpadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Length"
),
"Input(Length) of SequenceUnpadOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceUnpadOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"The rank of Input(X) can't be less than 2."
);
auto
len_dims
=
ctx
->
GetInputDim
(
"Length"
);
PADDLE_ENFORCE
(
len_dims
.
size
()
==
2
&&
len_dims
[
1
]
==
1
,
"The shape of Input(Length) should be [batch_size, 1]."
);
PADDLE_ENFORCE
(
len_dims
[
0
]
==
x_dims
[
0
],
"Input(X) and Input(Length) should have the same first dimension."
);
int64_t
out_dim_0
=
-
1
;
if
(
ctx
->
IsRuntime
())
{
out_dim_0
=
x_dims
[
0
]
*
x_dims
[
1
];
}
std
::
vector
<
int64_t
>
out_dims_vec
{
out_dim_0
};
if
(
x_dims
.
size
()
==
2
)
{
out_dims_vec
.
push_back
(
1
);
}
else
{
for
(
size_t
i
=
2
;
i
<
x_dims
.
size
();
++
i
)
{
out_dims_vec
.
push_back
(
x_dims
[
i
]);
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims_vec
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
SequenceUnpadOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(LoDTensor, default LoDTensor<float>) Input tensor which "
"contains the padded sequences with equal length."
);
AddInput
(
"Length"
,
"(LoDTensor) The input tensor which specifies the actual ength of "
"sequences after unpadding."
);
AddOutput
(
"Out"
,
"(LoDTensor) The output tensor which contains unpadded sequences."
);
AddComment
(
R"DOC(
Sequence Unpad Operator
This operator removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
information.
Example:
Given input tensor Input(X):
X.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
`
in which there are 3 sequences padded to length 5, and the acutal length
specified by Input(Length):
Length.data = [[2], [3], [4]],
after unpadding, Output(Out) will be:
Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
Out.lod = [[0, 2, 5, 9]]
)DOC"
);
}
};
class
SequenceUnpadGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceUnpadGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) of SequenceUnpadGradOp should not be null."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sequence_unpad
,
ops
::
SequenceUnpadOp
,
ops
::
SequenceUnpadOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_unpad
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_unpad_op.cu
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_unpad_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_unpad
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceUnpadOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_unpad_grad
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceUnpadGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_unpad_op.h
0 → 100644
浏览文件 @
38612695
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceUnpadOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x_t
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
len_t
=
ctx
.
Input
<
LoDTensor
>
(
"Length"
);
auto
*
out_t
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int64_t
*
seq_len_ptr
=
nullptr
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
LoDTensor
seq_len_cpu
;
seq_len_cpu
.
Resize
(
len_t
->
dims
());
seq_len_ptr
=
seq_len_cpu
.
mutable_data
<
int64_t
>
(
platform
::
CPUPlace
());
framework
::
TensorCopy
(
*
len_t
,
platform
::
CPUPlace
(),
ctx
.
template
device_context
<
DeviceContext
>(),
&
seq_len_cpu
);
}
else
{
seq_len_ptr
=
len_t
->
data
<
int64_t
>
();
}
size_t
batch_size
=
x_t
->
dims
()[
0
];
std
::
vector
<
size_t
>
out_lod0
(
batch_size
+
1
,
0
);
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
out_lod0
[
i
+
1
]
=
out_lod0
[
i
]
+
seq_len_ptr
[
i
];
}
framework
::
LoD
out_lod
;
out_lod
.
push_back
(
out_lod0
);
out_t
->
set_lod
(
out_lod
);
std
::
vector
<
int64_t
>
out_dims_vec
{
static_cast
<
int64_t
>
(
out_lod0
.
back
())};
if
(
x_t
->
dims
().
size
()
==
2
)
{
out_dims_vec
.
push_back
(
1
);
}
else
{
for
(
size_t
i
=
2
;
i
<
x_t
->
dims
().
size
();
++
i
)
{
out_dims_vec
.
push_back
(
x_t
->
dims
()[
i
]);
}
}
out_t
->
Resize
(
framework
::
make_ddim
(
out_dims_vec
));
int64_t
padded_length
=
x_t
->
dims
()[
1
];
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
x_t
,
out_t
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceUnpadGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_x
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
)
{
const
auto
*
d_out
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
const
auto
*
x_t
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
padded_length
=
x_t
->
dims
()[
1
];
LoDTensor
zero_pads
;
zero_pads
.
Resize
({
1
,
1
});
zero_pads
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
&
zero_pads
,
static_cast
<
T
>
(
0
));
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
d_out
,
d_x
,
zero_pads
,
padded_length
,
0
,
false
,
math
::
kBatchLengthWidth
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/sgd_op.cc
浏览文件 @
38612695
...
@@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of SGDOp should not be null."
);
"Input(Param) of SGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
...
@@ -42,7 +42,7 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -42,7 +42,7 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
}
...
@@ -50,17 +50,20 @@ class SGDOp : public framework::OperatorWithKernel {
...
@@ -50,17 +50,20 @@ class SGDOp : public framework::OperatorWithKernel {
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
auto
input_var_n
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
in_var_type
=
block
->
FindRecursiveOrCreateVar
(
input_var_n
).
GetType
();
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
PADDLE_ENFORCE
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
"The input Var's type should be LoDtensor or SelectedRows,"
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
" but the received var(%s)'s type is %s"
,
}
else
{
input_var_n
,
in_var_type
);
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
out_var_n
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_n
);
if
(
out_var
.
GetType
()
!=
in_var_type
)
{
out_var
.
SetType
(
in_var_type
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/sgd_op.cu
浏览文件 @
38612695
...
@@ -56,6 +56,12 @@ template <typename T>
...
@@ -56,6 +56,12 @@ template <typename T>
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
Inputs
(
"Param"
).
front
(),
param_var
->
Type
().
name
());
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
38612695
...
@@ -23,14 +23,14 @@ namespace operators {
...
@@ -23,14 +23,14 @@ namespace operators {
template
<
typename
T
>
template
<
typename
T
>
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CPUUniformRandomKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
Tensor
*
tensor
=
nullptr
;
framework
::
Tensor
*
tensor
=
nullptr
;
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
*
selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
*
selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
tensor
=
selected_rows
->
mutable_value
();
tensor
=
selected_rows
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
selected_rows
->
mutable_rows
()
->
reserve
(
shape
[
0
]);
selected_rows
->
mutable_rows
()
->
reserve
(
shape
[
0
]);
...
@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
...
@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
"uniform_random_op's output only"
"uniform_random_op's output only"
"supports SelectedRows and LoDTensor"
);
"supports SelectedRows and LoDTensor"
);
}
}
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
));
std
::
minstd_rand
engine
;
std
::
minstd_rand
engine
;
if
(
seed
==
0
)
{
if
(
seed
==
0
)
{
...
@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
...
@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of UniformRandomOp should not be null."
);
"Output(Out) of UniformRandomOp should not be null."
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
"uniform_random's min must less then max"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
std
::
vector
<
int64_t
>
temp
;
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
shape
.
size
());
temp
.
reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
for
(
auto
dim
:
shape
)
{
...
@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
...
@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
)),
ctx
.
GetPlace
());
ctx
.
GetPlace
());
...
@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
...
@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
if
(
block
->
FindRecursiveOrCreateVar
(
out_var_name
).
GetType
()
==
auto
var_data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
}
else
{
if
(
out_var
.
GetType
()
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
out_var
.
SetDataType
(
var_data_type
);
}
}
};
};
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
38612695
...
@@ -198,9 +198,9 @@ class CudnnHolder {
...
@@ -198,9 +198,9 @@ class CudnnHolder {
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
SetDeviceId
(
place_
.
device
);
SetDeviceId
(
place_
.
device
);
compute_capability
=
GetCUDAComputeCapability
(
place_
.
device
);
compute_capability
_
=
GetCUDAComputeCapability
(
place_
.
device
);
multi_process
=
GetCUDAMultiProcessors
(
place_
.
device
);
multi_process
_
=
GetCUDAMultiProcessors
(
place_
.
device
);
max_threads_per_mp
=
GetCUDAMaxThreadsPerMultiProcessor
(
place_
.
device
);
max_threads_per_mp
_
=
GetCUDAMaxThreadsPerMultiProcessor
(
place_
.
device
);
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
...
@@ -211,6 +211,16 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
...
@@ -211,6 +211,16 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
}
}
driver_version_
=
GetCUDADriverVersion
(
place_
.
device
);
runtime_version_
=
GetCUDARuntimeVersion
(
place_
.
device
);
LOG
(
INFO
)
<<
"device: "
<<
place_
.
device
<<
", CUDA Capability: "
<<
compute_capability_
<<
", Driver Version: "
<<
driver_version_
/
1000
<<
"."
<<
(
driver_version_
%
100
)
/
10
<<
", Runtime Version: "
<<
runtime_version_
/
1000
<<
"."
<<
(
runtime_version_
%
100
)
/
10
;
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
}
}
...
@@ -232,11 +242,11 @@ void CUDADeviceContext::Wait() const {
...
@@ -232,11 +242,11 @@ void CUDADeviceContext::Wait() const {
}
}
int
CUDADeviceContext
::
GetComputeCapability
()
const
{
int
CUDADeviceContext
::
GetComputeCapability
()
const
{
return
compute_capability
;
return
compute_capability
_
;
}
}
int
CUDADeviceContext
::
GetMaxPhysicalThreadCount
()
const
{
int
CUDADeviceContext
::
GetMaxPhysicalThreadCount
()
const
{
return
multi_process
*
max_threads_per_mp
;
return
multi_process
_
*
max_threads_per_mp_
;
}
}
Eigen
::
GpuDevice
*
CUDADeviceContext
::
eigen_device
()
const
{
Eigen
::
GpuDevice
*
CUDADeviceContext
::
eigen_device
()
const
{
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
38612695
...
@@ -135,9 +135,11 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -135,9 +135,11 @@ class CUDADeviceContext : public DeviceContext {
cudaStream_t
stream_
;
cudaStream_t
stream_
;
cublasHandle_t
cublas_handle_
;
cublasHandle_t
cublas_handle_
;
int
compute_capability
;
int
compute_capability_
;
int
multi_process
;
int
runtime_version_
;
int
max_threads_per_mp
;
int
driver_version_
;
int
multi_process_
;
int
max_threads_per_mp_
;
mutable
std
::
mutex
mtx_
;
mutable
std
::
mutex
mtx_
;
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
38612695
...
@@ -130,6 +130,13 @@ struct EOFException : public std::exception {
...
@@ -130,6 +130,13 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) (condition == 0)
#define UNLIKELY(condition) (condition == 0)
#endif
#endif
#if !defined(_WIN32)
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition) (condition != 0)
#endif
template
<
typename
...
Args
>
template
<
typename
...
Args
>
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
bool
stat
,
const
Args
&
...
args
)
{
bool
stat
,
const
Args
&
...
args
)
{
...
...
paddle/fluid/platform/gpu_info.cc
浏览文件 @
38612695
...
@@ -46,6 +46,24 @@ int GetCUDAComputeCapability(int id) {
...
@@ -46,6 +46,24 @@ int GetCUDAComputeCapability(int id) {
return
device_prop
.
major
*
10
+
device_prop
.
minor
;
return
device_prop
.
major
*
10
+
device_prop
.
minor
;
}
}
int
GetCUDARuntimeVersion
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
runtime_version
=
0
;
PADDLE_ENFORCE
(
cudaRuntimeGetVersion
(
&
runtime_version
),
"cudaRuntimeGetVersion failed in "
"paddle::platform::cudaRuntimeGetVersion"
);
return
runtime_version
;
}
int
GetCUDADriverVersion
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
driver_version
=
0
;
PADDLE_ENFORCE
(
cudaDriverGetVersion
(
&
driver_version
),
"cudaDriverGetVersion failed in "
"paddle::platform::GetCUDADriverVersion"
);
return
driver_version
;
}
int
GetCUDAMultiProcessors
(
int
id
)
{
int
GetCUDAMultiProcessors
(
int
id
)
{
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
PADDLE_ENFORCE_LT
(
id
,
GetCUDADeviceCount
(),
"id must less than GPU count"
);
int
count
;
int
count
;
...
...
paddle/fluid/platform/gpu_info.h
浏览文件 @
38612695
...
@@ -29,6 +29,12 @@ int GetCUDADeviceCount();
...
@@ -29,6 +29,12 @@ int GetCUDADeviceCount();
//! Get the compute capability of the ith GPU (format: major * 10 + minor)
//! Get the compute capability of the ith GPU (format: major * 10 + minor)
int
GetCUDAComputeCapability
(
int
i
);
int
GetCUDAComputeCapability
(
int
i
);
//! Get the runtime version of the ith GPU
int
GetCUDARuntimeVersion
(
int
id
);
//! Get the driver version of the ith GPU
int
GetCUDADriverVersion
(
int
id
);
//! Get the MultiProcessors of the ith GPU.
//! Get the MultiProcessors of the ith GPU.
int
GetCUDAMultiProcessors
(
int
i
);
int
GetCUDAMultiProcessors
(
int
i
);
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
38612695
...
@@ -276,7 +276,7 @@ struct EventItem {
...
@@ -276,7 +276,7 @@ struct EventItem {
// Print results
// Print results
void
PrintProfiler
(
const
std
::
vector
<
std
::
vector
<
EventItem
>>&
events_table
,
void
PrintProfiler
(
const
std
::
vector
<
std
::
vector
<
EventItem
>>&
events_table
,
const
std
::
string
&
sorted_domain
,
const
size_t
name_width
,
const
std
::
string
&
sorted_domain
,
const
size_t
name_width
,
const
size_t
data_width
,
double
total
)
{
const
size_t
data_width
,
bool
merge_thread
)
{
// Output header information
// Output header information
std
::
cout
<<
"
\n
------------------------->"
std
::
cout
<<
"
\n
------------------------->"
<<
" Profiling Report "
<<
" Profiling Report "
...
@@ -292,6 +292,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
...
@@ -292,6 +292,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
PADDLE_THROW
(
"Invalid profiler state"
,
g_state
);
PADDLE_THROW
(
"Invalid profiler state"
,
g_state
);
}
}
if
(
merge_thread
)
{
std
::
cout
<<
"Note! This Report merge all thread info into one."
<<
std
::
endl
;
}
std
::
cout
<<
"Place: "
<<
place
<<
std
::
endl
;
std
::
cout
<<
"Place: "
<<
place
<<
std
::
endl
;
std
::
cout
<<
"Time unit: ms"
<<
std
::
endl
;
std
::
cout
<<
"Time unit: ms"
<<
std
::
endl
;
std
::
cout
<<
"Sorted by "
<<
sorted_domain
std
::
cout
<<
"Sorted by "
<<
sorted_domain
...
@@ -312,8 +316,7 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
...
@@ -312,8 +316,7 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
<<
std
::
setw
(
data_width
)
<<
event_item
.
min_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
min_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
max_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
max_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
total_time
/
total
<<
std
::
setw
(
data_width
)
<<
event_item
.
ratio
<<
std
::
endl
;
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
std
::
endl
;
std
::
cout
<<
std
::
endl
;
...
@@ -321,8 +324,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
...
@@ -321,8 +324,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
// Parse the event list and output the profiling report
// Parse the event list and output the profiling report
void
ParseEvents
(
const
std
::
vector
<
std
::
vector
<
Event
>>&
events
,
void
ParseEvents
(
const
std
::
vector
<
std
::
vector
<
Event
>>&
events
,
bool
merge_thread
,
EventSortingKey
sorted_by
=
EventSortingKey
::
kDefault
)
{
EventSortingKey
sorted_by
=
EventSortingKey
::
kDefault
)
{
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
g_state
==
ProfilerState
::
kDisabled
)
return
;
if
(
merge_thread
&&
events
.
size
()
<
2
)
return
;
std
::
string
sorted_domain
;
std
::
string
sorted_domain
;
std
::
function
<
bool
(
const
EventItem
&
,
const
EventItem
&
)
>
sorted_func
;
std
::
function
<
bool
(
const
EventItem
&
,
const
EventItem
&
)
>
sorted_func
;
...
@@ -361,34 +366,55 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
...
@@ -361,34 +366,55 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
sorted_domain
=
"event first end time"
;
sorted_domain
=
"event first end time"
;
}
}
const
std
::
vector
<
std
::
vector
<
Event
>>*
analyze_events
;
std
::
vector
<
std
::
vector
<
Event
>>
merged_events_list
;
if
(
merge_thread
)
{
std
::
vector
<
Event
>
merged_events
;
for
(
int
i
=
0
;
i
<
events
.
size
();
++
i
)
{
for
(
int
j
=
0
;
j
<
events
[
i
].
size
();
++
j
)
{
merged_events
.
push_back
(
events
[
i
][
j
]);
}
}
merged_events_list
.
push_back
(
merged_events
);
analyze_events
=
&
merged_events_list
;
}
else
{
analyze_events
=
&
events
;
}
std
::
vector
<
std
::
vector
<
EventItem
>>
events_table
;
std
::
vector
<
std
::
vector
<
EventItem
>>
events_table
;
size_t
max_name_width
=
0
;
size_t
max_name_width
=
0
;
double
total
=
0.
;
// the total time
for
(
size_t
i
=
0
;
i
<
(
*
analyze_events
).
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
events
.
size
();
i
++
)
{
double
total
=
0.
;
// the total time in one thread
std
::
list
<
Event
>
pushed_events
;
std
::
list
<
Event
>
pushed_events
;
std
::
vector
<
EventItem
>
event_items
;
std
::
vector
<
EventItem
>
event_items
;
std
::
unordered_map
<
std
::
string
,
int
>
event_idx
;
std
::
unordered_map
<
std
::
string
,
int
>
event_idx
;
for
(
size_t
j
=
0
;
j
<
events
[
i
].
size
();
j
++
)
{
for
(
size_t
j
=
0
;
j
<
(
*
analyze_events
)
[
i
].
size
();
j
++
)
{
if
(
events
[
i
][
j
].
type
()
==
EventType
::
kPushRange
)
{
if
(
(
*
analyze_events
)
[
i
][
j
].
type
()
==
EventType
::
kPushRange
)
{
pushed_events
.
push_back
(
events
[
i
][
j
]);
pushed_events
.
push_back
(
(
*
analyze_events
)
[
i
][
j
]);
}
else
if
(
events
[
i
][
j
].
type
()
==
EventType
::
kPopRange
)
{
}
else
if
(
(
*
analyze_events
)
[
i
][
j
].
type
()
==
EventType
::
kPopRange
)
{
std
::
list
<
Event
>::
reverse_iterator
rit
=
pushed_events
.
rbegin
();
std
::
list
<
Event
>::
reverse_iterator
rit
=
pushed_events
.
rbegin
();
while
(
rit
!=
pushed_events
.
rend
()
&&
while
(
rit
!=
pushed_events
.
rend
()
&&
rit
->
name
()
!=
events
[
i
][
j
].
name
())
{
rit
->
name
()
!=
(
*
analyze_events
)
[
i
][
j
].
name
())
{
++
rit
;
++
rit
;
}
}
if
(
rit
!=
pushed_events
.
rend
())
{
if
(
rit
!=
pushed_events
.
rend
())
{
double
event_time
=
(
g_state
==
ProfilerState
::
kCUDA
||
double
event_time
=
(
g_state
==
ProfilerState
::
kCUDA
||
g_state
==
ProfilerState
::
kAll
)
g_state
==
ProfilerState
::
kAll
)
?
rit
->
CudaElapsedMs
(
events
[
i
][
j
])
?
rit
->
CudaElapsedMs
(
(
*
analyze_events
)
[
i
][
j
])
:
rit
->
CpuElapsedMs
(
events
[
i
][
j
]);
:
rit
->
CpuElapsedMs
(
(
*
analyze_events
)
[
i
][
j
]);
total
+=
event_time
;
total
+=
event_time
;
std
::
string
event_name
=
std
::
string
event_name
;
"thread"
+
std
::
to_string
(
rit
->
thread_id
())
+
"::"
+
rit
->
name
();
if
(
merge_thread
)
{
max_name_width
=
std
::
max
(
max_name_width
,
event_name
.
size
());
event_name
=
rit
->
name
();
max_name_width
=
std
::
max
(
max_name_width
,
event_name
.
size
());
}
else
{
event_name
=
"thread"
+
std
::
to_string
(
rit
->
thread_id
())
+
"::"
+
rit
->
name
();
max_name_width
=
std
::
max
(
max_name_width
,
event_name
.
size
());
}
if
(
event_idx
.
find
(
event_name
)
==
event_idx
.
end
())
{
if
(
event_idx
.
find
(
event_name
)
==
event_idx
.
end
())
{
event_idx
[
event_name
]
=
event_items
.
size
();
event_idx
[
event_name
]
=
event_items
.
size
();
...
@@ -413,7 +439,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
...
@@ -413,7 +439,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
pushed_events
.
erase
((
++
rit
).
base
());
pushed_events
.
erase
((
++
rit
).
base
());
}
else
{
}
else
{
LOG
(
WARNING
)
<<
"Cannot find the push marker of event
\'
"
LOG
(
WARNING
)
<<
"Cannot find the push marker of event
\'
"
<<
events
[
i
][
j
].
name
()
<<
(
*
analyze_events
)
[
i
][
j
].
name
()
<<
"
\'
, which will be ignored in profiling report."
;
<<
"
\'
, which will be ignored in profiling report."
;
}
}
}
}
...
@@ -421,6 +447,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
...
@@ -421,6 +447,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
// average time
// average time
for
(
auto
&
item
:
event_items
)
{
for
(
auto
&
item
:
event_items
)
{
item
.
ave_time
=
item
.
total_time
/
item
.
calls
;
item
.
ave_time
=
item
.
total_time
/
item
.
calls
;
item
.
ratio
=
item
.
total_time
/
total
;
}
}
// sort
// sort
if
(
sorted_by
!=
EventSortingKey
::
kDefault
)
{
if
(
sorted_by
!=
EventSortingKey
::
kDefault
)
{
...
@@ -438,7 +465,8 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
...
@@ -438,7 +465,8 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
}
}
// Print report
// Print report
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
,
total
);
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
,
merge_thread
);
}
}
void
DisableProfiler
(
EventSortingKey
sorted_key
,
void
DisableProfiler
(
EventSortingKey
sorted_key
,
...
@@ -449,7 +477,8 @@ void DisableProfiler(EventSortingKey sorted_key,
...
@@ -449,7 +477,8 @@ void DisableProfiler(EventSortingKey sorted_key,
Mark
(
"_stop_profiler_"
,
nullptr
);
Mark
(
"_stop_profiler_"
,
nullptr
);
std
::
vector
<
std
::
vector
<
Event
>>
all_events
=
GetAllEvents
();
std
::
vector
<
std
::
vector
<
Event
>>
all_events
=
GetAllEvents
();
ParseEvents
(
all_events
,
sorted_key
);
ParseEvents
(
all_events
,
true
,
sorted_key
);
ParseEvents
(
all_events
,
false
,
sorted_key
);
ResetProfiler
();
ResetProfiler
();
DeviceTracer
*
tracer
=
GetDeviceTracer
();
DeviceTracer
*
tracer
=
GetDeviceTracer
();
if
(
tracer
->
IsEnabled
())
{
if
(
tracer
->
IsEnabled
())
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
38612695
...
@@ -57,6 +57,10 @@ limitations under the License. */
...
@@ -57,6 +57,10 @@ limitations under the License. */
#include "pybind11/stl.h"
#include "pybind11/stl.h"
DEFINE_bool
(
reader_queue_speed_test_mode
,
false
,
"If set true, the queue.pop will only get data from queue but not "
"remove the data from queue for speed testing"
);
// disable auto conversion to list in Python
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE
(
paddle
::
framework
::
LoDTensorArray
);
PYBIND11_MAKE_OPAQUE
(
paddle
::
framework
::
LoDTensorArray
);
...
@@ -157,7 +161,50 @@ PYBIND11_PLUGIN(core) {
...
@@ -157,7 +161,50 @@ PYBIND11_PLUGIN(core) {
.
def
(
"_get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"_get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
.
def
(
"_dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
)
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
,
R"DOC(
LoDTensor is a Tensor with optional LoD information.
np.array(lod_tensor) can convert LoDTensor to numpy array.
lod_tensor.lod() can retrieve the LoD information.
LoD is short for Level of Details and is usually used for varied sequence
length. You can skip the following comment if you don't need optional LoD.
For example:
A LoDTensor X can look like the example below. It contains 2 sequences.
The first has length 2 and the second has length 3, as described by x.lod.
The first tensor dimension 5=2+3 is calculated from LoD if it's available.
It means the total number of sequence element. In X, each element has 2
columns, hence [5, 2].
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4],
[5, 6], [7, 8], [9, 10]]
x.shape = [5, 2]
LoD can have multiple levels (for example, a paragraph can have multiple
sentences and a sentence can have multiple words). In the following
LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
first sequence length is 2 (has 2 sub-sequences), the second one's
length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
respectively. And the second sequence's 1 sub-sequence has length 3.
y.lod = [[2 1], [2 2 3]]
y.shape = [2+2+3, ...]
Note:
In above description, LoD is length-based. In Paddle internal
implementation, lod is offset-based. Hence, internally,
y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).
Sometimes LoD is called recursive_sequence_length to be more
self-explanatory. In this case, it must be length-based. Due to history
reasons. when LoD is called lod in public API, it might be offset-based.
Users should be careful about it.
)DOC"
)
.
def_buffer
(
.
def_buffer
(
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
.
def
(
"__init__"
,
.
def
(
"__init__"
,
...
@@ -337,7 +384,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -337,7 +384,8 @@ All parameter, weight, gradient are variables in Paddle.
return
make_ddim
(
shape
);
return
make_ddim
(
shape
);
});
});
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
);
holder
->
InitOnce
(
capacity
,
dims
,
FLAGS_reader_queue_speed_test_mode
);
return
holder
->
GetQueue
();
return
holder
->
GetQueue
();
},
},
py
::
return_value_policy
::
copy
);
py
::
return_value_policy
::
copy
);
...
@@ -624,16 +672,17 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -624,16 +672,17 @@ All parameter, weight, gradient are variables in Paddle.
ExecutionStrategy allows the user to more preciously control how to run
ExecutionStrategy allows the user to more preciously control how to run
the program in ParallelExecutor by setting the property.
the program in ParallelExecutor by setting the property.
The available properties include:
Examples:
use_cuda (bool): Whether to use CUDA or not. Default True.
.. code-block:: python
num_threads (int): The number of threads that used to run the
operators in ParallelExecutor. If it is not set, it will be
exec_strategy = fluid.ExecutionStrategy()
set in ParallelExecutor according to the device count.
exec_strategy.num_threads = 4
Default 0.
allow_op_delay (bool): Whether to delay the communication operators
train_exe = fluid.ParallelExecutor(use_cuda=True,
to run. Default False.
loss_name=loss.name,
num_iteration_per_drop_scope (int): how many iterations between
exec_strategy=exec_strategy)
the two dropping local scopes. Default 100.
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
)DOC"
);
...
@@ -643,19 +692,34 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -643,19 +692,34 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
self
.
num_threads_
=
num_threads
;
self
.
num_threads_
=
num_threads
;
})
},
R"DOC(The type is INT, num_threads represents the size of thread pool that
used to run the operators of the current program in ParallelExecutor.
If :math:`num\_threads=1`, all the operators will execute one by one,
but the order maybe difference between iterations.
If it is not set, it will be set in ParallelExecutor according to the
device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
:math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
if it is not set, ParallelExecutor will get the cpu count by calling
`multiprocessing.cpu_count()`. Default 0.)DOC"
)
.
def_property
(
.
def_property
(
"use_cuda"
,
"use_cuda"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_cuda_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_cuda_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_cuda
)
{
[](
ExecutionStrategy
&
self
,
bool
use_cuda
)
{
self
.
use_cuda_
=
use_cuda
;
self
.
use_cuda_
=
use_cuda
;
})
})
// FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
// make user confuse, because ParallelExecutor has a parameter named
// 'use_cuda' too, in current implementation, ParallelExecutor's
// 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
.
def_property
(
.
def_property
(
"allow_op_delay"
,
"allow_op_delay"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
self
.
allow_op_delay_
=
allow_op_delay
;
})
},
R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
communication operators to run, it may make the execution faster.
Note that in some models, allow_op_delay may cause program hang. Default False.)DOC"
)
.
def_property
(
.
def_property
(
"num_iteration_per_drop_scope"
,
"num_iteration_per_drop_scope"
,
[](
const
ExecutionStrategy
&
self
)
{
[](
const
ExecutionStrategy
&
self
)
{
...
@@ -663,7 +727,19 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -663,7 +727,19 @@ All parameter, weight, gradient are variables in Paddle.
},
},
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
});
},
R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
many iterations to clean up the temp variables which
is generated during execution. It may make the execution faster,
because the temp variable's shape maybe the same between two iterations. Default 100.
NOTES:
1. If you fetch data when calling the 'run', the ParallelExecutor
will clean up the temp variables at the end of the current iteration.
2. In some NLP model, it may cause the GPU memory is insufficient,
in this case, you should reduce `num_iteration_per_drop_scope`.
)DOC"
);
exec_strategy
.
def_property
(
exec_strategy
.
def_property
(
"use_experimental_executor"
,
"use_experimental_executor"
,
[](
const
ExecutionStrategy
&
self
)
{
[](
const
ExecutionStrategy
&
self
)
{
...
@@ -678,20 +754,17 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -678,20 +754,17 @@ All parameter, weight, gradient are variables in Paddle.
BuildStrategy allows the user to more preciously control how to
BuildStrategy allows the user to more preciously control how to
build the SSA Graph in ParallelExecutor by setting the property.
build the SSA Graph in ParallelExecutor by setting the property.
The available properties include:
Examples:
reduce_strategy (str): There are two reduce strategies, 'AllReduce'
.. code-block:: python
and 'Reduce'. If you want that all parameters will be optimized
on all devices, you can choose 'AllReduce'; if you choose
build_strategy = fluid.BuildStrategy()
'Reduce', all parameters will be evenly allocated to different
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
devices for optimization, and then broadcast the optimized
parameter to other devices. Default 'AllReduce'.
train_exe = fluid.ParallelExecutor(use_cuda=True,
gradient_scale_strategy (str): There are two ways of defining loss@grad,
loss_name=loss.name,
'CoeffNumDevice' and 'Customized'. By default, ParallelExecutor
build_strategy=build_strategy)
sets the loss@grad according to the number of devices. If you want
to customize loss@grad, you can choose 'Customized'.
train_loss, = train_exe.run([loss.name], feed=feed_dict)
Default 'CoeffNumDevice'.
debug_graphviz_path (str): Whether to write the SSA Graph to file in the
form of graphviz. It is useful for debugging. Default "".
)DOC"
);
)DOC"
);
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
...
@@ -710,31 +783,51 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -710,31 +783,51 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
self
.
reduce_
=
strategy
;
self
.
reduce_
=
strategy
;
})
},
R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
'AllReduce' and 'Reduce'. If you want that all the parameters'
optimization are done on all devices independently, you should choose 'AllReduce';
if you choose 'Reduce', all the parameters' optimization will be evenly distributed
to different devices, and then broadcast the optimized parameter to other devices.
In some models, `Reduce` is faster. Default 'AllReduce'. )DOC"
)
.
def_property
(
.
def_property
(
"gradient_scale_strategy"
,
"gradient_scale_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
self
.
gradient_scale_
=
strategy
;
})
},
R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
If you want to customize :math:`loss@grad`, you can choose 'Customized'.
Default 'CoeffNumDevice'.)DOC"
)
.
def_property
(
.
def_property
(
"debug_graphviz_path"
,
"debug_graphviz_path"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
self
.
debug_graphviz_path_
=
path
;
self
.
debug_graphviz_path_
=
path
;
})
},
R"DOC(The type is STR, debug_graphviz_path indicate the path that
writing the SSA Graph to file in the form of graphviz, you.
It is useful for debugging. Default "")DOC"
)
.
def_property
(
.
def_property
(
"enable_data_balance"
,
"enable_data_balance"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_data_balance_
;
},
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_data_balance_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_data_balance_
=
b
;
})
[](
BuildStrategy
&
self
,
bool
b
)
{
.
def_property
(
"fuse_elewise_add_act_ops"
,
self
.
enable_data_balance_
=
b
;
[](
const
BuildStrategy
&
self
)
{
})
// FIXME(chengudo): enable_data_balance seems not important
return
self
.
fuse_elewise_add_act_ops_
;
.
def_property
(
},
"fuse_elewise_add_act_ops"
,
[](
BuildStrategy
&
self
,
bool
b
)
{
[](
const
BuildStrategy
&
self
)
{
self
.
fuse_elewise_add_act_ops_
=
b
;
return
self
.
fuse_elewise_add_act_ops_
;
})
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
fuse_elewise_add_act_ops_
=
b
;
},
R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
to fuse elementwise_add_op and activation_op,
it may make the execution faster. Default False)DOC"
)
.
def
(
"_create_passes_from_strategy"
,
.
def
(
"_create_passes_from_strategy"
,
[](
BuildStrategy
&
self
)
->
std
::
shared_ptr
<
ir
::
PassBuilder
>
{
[](
BuildStrategy
&
self
)
->
std
::
shared_ptr
<
ir
::
PassBuilder
>
{
return
self
.
CreatePassesFromStrategy
();
return
self
.
CreatePassesFromStrategy
();
...
...
paddle/fluid/train/demo/README.md
浏览文件 @
38612695
...
@@ -15,7 +15,7 @@ cmake .. -DFLUID_INSTALL_DIR=$PADDLE_LIB \
...
@@ -15,7 +15,7 @@ cmake .. -DFLUID_INSTALL_DIR=$PADDLE_LIB \
-DWITH_MKL=OFF \
-DWITH_MKL=OFF \
-DWITH_MKLDNN=OFF
-DWITH_MKLDNN=OFF
make -j8
make -j8
make -j8
inference
_lib_dist
make -j8
fluid
_lib_dist
```
```
### step 2. generate program desc
### step 2. generate program desc
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
38612695
...
@@ -648,25 +648,25 @@ function gen_capi_package() {
...
@@ -648,25 +648,25 @@ function gen_capi_package() {
fi
fi
}
}
function
gen_fluid_
inference_
lib
()
{
function
gen_fluid_lib
()
{
mkdir
-p
${
PADDLE_ROOT
}
/build
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Generating fluid
inference library
...
Generating fluid
library for train and inference
...
========================================
========================================
EOF
EOF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
cmake ..
-DWITH_DISTRIBUTE
=
OFF
make
-j
`
nproc
`
inference
_lib_dist
make
-j
`
nproc
`
fluid
_lib_dist
fi
fi
}
}
function
tar_fluid_
inference_
lib
()
{
function
tar_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Taring fluid
inference library
...
Taring fluid
library for train and inference
...
========================================
========================================
EOF
EOF
cd
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
...
@@ -675,11 +675,11 @@ EOF
...
@@ -675,11 +675,11 @@ EOF
fi
fi
}
}
function
test_fluid_
inference_
lib
()
{
function
test_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
cat
<<
EOF
cat
<<
EOF
========================================
========================================
Testing fluid
inference library
...
Testing fluid
library for inference
...
========================================
========================================
EOF
EOF
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
...
@@ -731,9 +731,9 @@ function main() {
...
@@ -731,9 +731,9 @@ function main() {
;;
;;
fluid_inference_lib
)
fluid_inference_lib
)
cmake_gen
${
PYTHON_ABI
:-
""
}
cmake_gen
${
PYTHON_ABI
:-
""
}
gen_fluid_
inference_
lib
gen_fluid_lib
tar_fluid_
inference_
lib
tar_fluid_lib
test_fluid_
inference_
lib
test_fluid_lib
;;
;;
check_style
)
check_style
)
check_style
check_style
...
@@ -744,8 +744,8 @@ function main() {
...
@@ -744,8 +744,8 @@ function main() {
assert_api_not_changed
${
PYTHON_ABI
:-
""
}
assert_api_not_changed
${
PYTHON_ABI
:-
""
}
run_test
run_test
gen_capi_package
gen_capi_package
gen_fluid_
inference_
lib
gen_fluid_lib
test_fluid_
inference_
lib
test_fluid_lib
assert_api_spec_approvals
assert_api_spec_approvals
;;
;;
maccheck
)
maccheck
)
...
...
python/paddle/fluid/__init__.py
浏览文件 @
38612695
...
@@ -113,7 +113,8 @@ def __bootstrap__():
...
@@ -113,7 +113,8 @@ def __bootstrap__():
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
'dist_threadpool_size'
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
,
'reader_queue_speed_test_mode'
]
]
if
core
.
is_compiled_with_dist
():
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
38612695
...
@@ -55,7 +55,11 @@ def data(name,
...
@@ -55,7 +55,11 @@ def data(name,
Args:
Args:
name(str): The name/alias of the function
name(str): The name/alias of the function
shape(list): Tuple declaring the shape.
shape(list): Tuple declaring the shape.
append_batch_size(bool): Whether or not to append the data as a batch.
append_batch_size(bool):
1. If true, it prepends -1 to the shape.
For example if shape=[1], the resulting shape is [-1, 1].
2. If shape contains -1, such as shape=[1, -1],
append_batch_size will be enforced to be be False (ineffective).
dtype(int|float): The type of data : float32, float_16, int etc
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
38612695
...
@@ -56,6 +56,7 @@ __all__ = [
...
@@ -56,6 +56,7 @@ __all__ = [
'sequence_expand'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_expand_as'
,
'sequence_pad'
,
'sequence_pad'
,
'sequence_unpad'
,
'lstm_unit'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_mean'
,
...
@@ -107,6 +108,7 @@ __all__ = [
...
@@ -107,6 +108,7 @@ __all__ = [
'log'
,
'log'
,
'crop'
,
'crop'
,
'rank_loss'
,
'rank_loss'
,
'margin_rank_loss'
,
'elu'
,
'elu'
,
'relu6'
,
'relu6'
,
'pow'
,
'pow'
,
...
@@ -2792,7 +2794,7 @@ def sequence_expand_as(x, y, name=None):
...
@@ -2792,7 +2794,7 @@ def sequence_expand_as(x, y, name=None):
@
templatedoc
()
@
templatedoc
()
def
sequence_pad
(
x
,
pad_value
,
maxlen
=
None
):
def
sequence_pad
(
x
,
pad_value
,
maxlen
=
None
,
name
=
None
):
"""
"""
${comment}
${comment}
...
@@ -2806,7 +2808,9 @@ def sequence_pad(x, pad_value, maxlen=None):
...
@@ -2806,7 +2808,9 @@ def sequence_pad(x, pad_value, maxlen=None):
None or any positive int. When it is None, all sequences will be
None or any positive int. When it is None, all sequences will be
padded up to the length of the longest one among them; when it a
padded up to the length of the longest one among them; when it a
certain positive value, it must be greater than the length of the
certain positive value, it must be greater than the length of the
longest original sequence."
longest original sequence.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Returns:
Variable: The padded sequence batch and the original lengths before
Variable: The padded sequence batch and the original lengths before
...
@@ -2843,6 +2847,66 @@ def sequence_pad(x, pad_value, maxlen=None):
...
@@ -2843,6 +2847,66 @@ def sequence_pad(x, pad_value, maxlen=None):
return
out
,
length
return
out
,
length
def
sequence_unpad
(
x
,
length
,
name
=
None
):
"""
**Sequence Unpad Layer**
This layer removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
information.
.. code-block:: text
Example:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
length.data = [[2], [3], [4]],
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[2, 3, 4]]
Args:
x(Variable): Input Variable which contains the padded sequences with
equal length.
length(Variable): The Variable that specifies the actual ength of
sequences after unpadding.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The Variable contains the unpadded sequences.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
len = fluid.layers.data(name='length', shape=[1], dtype='int64')
out = fluid.layers.sequence_unpad(x=x, length=len)
"""
helper
=
LayerHelper
(
'sequence_unpad'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_tmp_variable
(
dtype
)
length
.
stop_gradient
=
True
helper
.
append_op
(
type
=
'sequence_unpad'
,
inputs
=
{
'X'
:
x
,
'Length'
:
length
},
outputs
=
{
'Out'
:
out
})
return
out
def
beam_search
(
pre_ids
,
def
beam_search
(
pre_ids
,
pre_scores
,
pre_scores
,
ids
,
ids
,
...
@@ -5827,6 +5891,54 @@ def rank_loss(label, left, right, name=None):
...
@@ -5827,6 +5891,54 @@ def rank_loss(label, left, right, name=None):
return
out
return
out
def
margin_rank_loss
(
label
,
left
,
right
,
margin
=
0.1
,
name
=
None
):
"""
Margin Ranking Loss Layer for ranking problem,
which compares left score and right score passed in.
The ranking loss can be defined as following equation:
.. math::
rank\_loss &= max(0, -label * (left - right) + margin)
Args:
label (Variable): Indicates whether the left is ranked higher than the right or not.
left (Variable): Ranking score for left.
right (Variable): Ranking score for right.
margin (float): Indicates the given margin.
name (str|None): A name for this layer (optional). If set None, the layer
will be named automatically.
Returns:
Variable: The ranking loss.
Raises:
ValueError: Any of label, left, and right is not a Variable.
Examples:
.. code-block:: python
label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
out = fluid.layers.margin_rank_loss(label, left, right)
"""
helper
=
LayerHelper
(
'margin_rank_loss'
,
**
locals
())
if
not
isinstance
(
label
,
Variable
):
raise
ValueError
(
"The label should be a Variable."
)
if
not
isinstance
(
left
,
Variable
):
raise
ValueError
(
"The left should be a Variable."
)
if
not
isinstance
(
right
,
Variable
):
raise
ValueError
(
"The right should be a Variable."
)
out
=
helper
.
create_tmp_variable
(
left
.
dtype
)
act
=
helper
.
create_tmp_variable
(
left
.
dtype
)
helper
.
append_op
(
type
=
'margin_rank_loss'
,
inputs
=
{
"Label"
:
label
,
"X1"
:
left
,
"X2"
:
right
},
outputs
=
{
'Out'
:
out
,
'Activated'
:
act
},
attrs
=
{
'margin'
:
margin
})
return
out
def
pad2d
(
input
,
def
pad2d
(
input
,
paddings
=
[
0
,
0
,
0
,
0
],
paddings
=
[
0
,
0
,
0
,
0
],
mode
=
'constant'
,
mode
=
'constant'
,
...
@@ -6290,6 +6402,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
...
@@ -6290,6 +6402,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'win_size'
:
win_size
,
attrs
=
{
'win_size'
:
win_size
,
'pad_value'
:
pad_value
})
'pad_value'
:
pad_value
})
return
out
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
38612695
...
@@ -14,6 +14,8 @@
...
@@ -14,6 +14,8 @@
from
__future__
import
print_function
from
__future__
import
print_function
from
.layer_function_generator
import
generate_layer_fn
,
generate_layer_fn_noattr
from
.layer_function_generator
import
generate_layer_fn
,
generate_layer_fn_noattr
from
..
import
core
from
..framework
import
convert_np_dtype_to_dtype_
__activations_noattr__
=
[
__activations_noattr__
=
[
'sigmoid'
,
'sigmoid'
,
...
@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
...
@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
def
uniform_random
(
shape
,
dtype
=
None
,
min
=
None
,
max
=
None
,
seed
=
None
):
def
uniform_random
(
shape
,
dtype
=
None
,
min
=
None
,
max
=
None
,
seed
=
None
):
locals_var
=
locals
().
keys
()
if
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
...
@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
def
hard_shrink
(
x
,
threshold
=
None
):
def
hard_shrink
(
x
,
threshold
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
...
@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
return
_cum_sum_
(
**
kwargs
)
...
@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
...
@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
def
thresholded_relu
(
x
,
threshold
=
None
):
def
thresholded_relu
(
x
,
threshold
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
kwargs
=
dict
()
for
name
in
locals
()
:
for
name
in
locals
_var
:
val
=
locals
()[
name
]
val
=
locals
()[
name
]
if
val
is
not
None
:
if
val
is
not
None
:
kwargs
[
name
]
=
val
kwargs
[
name
]
=
val
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
38612695
...
@@ -100,7 +100,7 @@ def create_global_var(shape,
...
@@ -100,7 +100,7 @@ def create_global_var(shape,
force_cpu
=
False
,
force_cpu
=
False
,
name
=
None
):
name
=
None
):
"""
"""
Create a new
variabl
e in the global block(block 0).
Create a new
tensor variable with valu
e in the global block(block 0).
Args:
Args:
shape(list[int]): shape of the variable
shape(list[int]): shape of the variable
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
38612695
...
@@ -659,6 +659,9 @@ class AdamaxOptimizer(Optimizer):
...
@@ -659,6 +659,9 @@ class AdamaxOptimizer(Optimizer):
optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
optimizer.minimize(cost)
optimizer.minimize(cost)
Notes:
Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
_inf_norm_acc_str
=
"inf_norm"
_inf_norm_acc_str
=
"inf_norm"
...
@@ -778,6 +781,9 @@ class DecayedAdagradOptimizer(Optimizer):
...
@@ -778,6 +781,9 @@ class DecayedAdagradOptimizer(Optimizer):
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer.minimize(cost)
optimizer.minimize(cost)
Notes:
Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
...
@@ -858,6 +864,9 @@ class AdadeltaOptimizer(Optimizer):
...
@@ -858,6 +864,9 @@ class AdadeltaOptimizer(Optimizer):
optimizer = fluid.optimizer.Adadelta(
optimizer = fluid.optimizer.Adadelta(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
_, params_grads = optimizer.minimize(cost)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
"""
"""
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
...
@@ -1126,6 +1135,9 @@ class FtrlOptimizer(Optimizer):
...
@@ -1126,6 +1135,9 @@ class FtrlOptimizer(Optimizer):
optimizer = fluid.optimizer.Ftrl(0.0001)
optimizer = fluid.optimizer.Ftrl(0.0001)
_, params_grads = optimizer.minimize(cost)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, FtrlOptimizer doesn't support sparse parameter optimization.
"""
"""
_squared_acc_str
=
"squared"
_squared_acc_str
=
"squared"
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
38612695
...
@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
...
@@ -31,15 +31,32 @@ BuildStrategy = core.ParallelExecutor.BuildStrategy
class
ParallelExecutor
(
object
):
class
ParallelExecutor
(
object
):
"""
"""
ParallelExecutor can run program in parallel.
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Args:
Args:
use_cuda (bool): Whether to use CUDA or not.
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provi
ed
, it will share variables
share_vars_from(ParallelExecutor): If provi
de
, it will share variables
from the specified ParallelExecutor. Default None.
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
Distributed training will be enabled then. Default 1.
...
...
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
浏览文件 @
38612695
...
@@ -81,7 +81,10 @@ def get_optimizer():
...
@@ -81,7 +81,10 @@ def get_optimizer():
return
optimizer
return
optimizer
def
train_network
(
batch_size
,
is_distributed
=
False
,
is_sparse
=
False
):
def
train_network
(
batch_size
,
is_distributed
=
False
,
is_sparse
=
False
,
is_self_contained_lr
=
False
):
# query
# query
q
=
fluid
.
layers
.
data
(
q
=
fluid
.
layers
.
data
(
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
...
@@ -93,7 +96,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
...
@@ -93,7 +96,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
is_sparse
=
is_sparse
)
is_sparse
=
is_sparse
)
## vsum
## vsum
q_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
q_emb
,
pool_type
=
'sum'
)
q_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
q_emb
,
pool_type
=
'sum'
)
...
@@ -119,7 +124,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
...
@@ -119,7 +124,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
is_sparse
=
is_sparse
)
is_sparse
=
is_sparse
)
## vsum
## vsum
pt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
pt_emb
,
pool_type
=
'sum'
)
pt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
pt_emb
,
pool_type
=
'sum'
)
...
@@ -144,7 +151,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
...
@@ -144,7 +151,9 @@ def train_network(batch_size, is_distributed=False, is_sparse=False):
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
name
=
"__emb__"
,
learning_rate
=
emb_lr
),
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
is_sparse
=
is_sparse
)
is_sparse
=
is_sparse
)
## vsum
## vsum
nt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
nt_emb
,
pool_type
=
'sum'
)
nt_sum
=
fluid
.
layers
.
sequence_pool
(
input
=
nt_emb
,
pool_type
=
'sum'
)
...
@@ -220,7 +229,10 @@ class TestDistSimnetBow2x2(TestDistRunnerBase):
...
@@ -220,7 +229,10 @@ class TestDistSimnetBow2x2(TestDistRunnerBase):
def
get_model
(
self
,
batch_size
=
2
):
def
get_model
(
self
,
batch_size
=
2
):
# Train program
# Train program
avg_cost
,
acc
,
predict
=
\
avg_cost
,
acc
,
predict
=
\
train_network
(
batch_size
,
bool
(
int
(
os
.
environ
[
"IS_DISTRIBUTED"
])),
bool
(
int
(
os
.
environ
[
"IS_SPARSE"
])))
train_network
(
batch_size
,
bool
(
int
(
os
.
environ
[
"IS_DISTRIBUTED"
])),
bool
(
int
(
os
.
environ
[
"IS_SPARSE"
])),
bool
(
int
(
os
.
environ
[
"IS_SELF_CONTAINED_LR"
])))
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
...
...
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
浏览文件 @
38612695
...
@@ -18,6 +18,9 @@ import unittest
...
@@ -18,6 +18,9 @@ import unittest
import
numpy
as
np
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
class
TestClipByNormOp
(
OpTest
):
class
TestClipByNormOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
...
@@ -62,5 +65,59 @@ class TestCase3(TestClipByNormOp):
...
@@ -62,5 +65,59 @@ class TestCase3(TestClipByNormOp):
self
.
max_norm
=
1.0
self
.
max_norm
=
1.0
class
TestClipByNormOpWithSelectedRows
(
OpTest
):
def
check_with_place
(
self
,
place
):
self
.
config_test_case
()
scope
=
core
.
Scope
()
# set input
x_selected_rows
=
scope
.
var
(
'X'
).
get_selected_rows
()
x_selected_rows
.
set_rows
(
self
.
grad_rows
)
x_tensor
=
x_selected_rows
.
get_tensor
()
x_np
=
np
.
random
.
random
(
self
.
grad_shape
).
astype
(
"float32"
)
x_np
[
np
.
abs
(
x_np
)
<
self
.
max_relative_error
]
=
0.5
x_tensor
.
set
(
x_np
,
place
)
# set output
out_selected_rows
=
scope
.
var
(
'Out'
).
get_selected_rows
()
# run clip_by_norm_op
clip_by_norm_op
=
fluid
.
op
.
Operator
(
"clip_by_norm"
,
max_norm
=
self
.
max_norm
,
X
=
'X'
,
Out
=
'Out'
)
clip_by_norm_op
.
run
(
scope
,
place
)
# check output
self
.
assertEqual
(
out_selected_rows
.
rows
(),
self
.
grad_clipped_rows
)
out_tensor
=
out_selected_rows
.
get_tensor
()
y_np
=
np
.
zeros
(
self
.
grad_clipped_shape
)
y_np
[
0
]
=
np
.
sum
(
x_np
[
0
:
2
])
y_np
[
1
]
=
x_np
[
2
]
y_np
[
2
]
=
x_np
[
3
]
norm
=
np
.
sqrt
(
np
.
sum
(
np
.
square
(
y_np
)))
if
norm
>
self
.
max_norm
:
output
=
self
.
max_norm
*
y_np
/
norm
else
:
output
=
y_np
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
out_tensor
),
output
,
atol
=
1e-5
,
equal_nan
=
False
))
def
test_clip_by_norm_with_selected_ros
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
def
config_test_case
(
self
):
self
.
max_norm
=
1.0
self
.
max_relative_error
=
0.006
self
.
grad_shape
=
(
4
,
1
)
self
.
grad_clipped_shape
=
(
3
,
1
)
self
.
grad_rows
=
[
0
,
0
,
1
,
2
]
self
.
grad_clipped_rows
=
[
0
,
1
,
2
]
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
浏览文件 @
38612695
...
@@ -25,7 +25,11 @@ class TestDistSimnetBowDense2x2(TestDistBase):
...
@@ -25,7 +25,11 @@ class TestDistSimnetBowDense2x2(TestDistBase):
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
}
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
self
.
check_with_place
(
"dist_simnet_bow.py"
,
"dist_simnet_bow.py"
,
delta
=
1e-5
,
delta
=
1e-5
,
...
@@ -39,7 +43,11 @@ class TestDistSimnetBow2x2DenseAsync(TestDistBase):
...
@@ -39,7 +43,11 @@ class TestDistSimnetBow2x2DenseAsync(TestDistBase):
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
}
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
self
.
check_with_place
(
"dist_simnet_bow.py"
,
"dist_simnet_bow.py"
,
delta
=
100
,
delta
=
100
,
...
@@ -53,7 +61,11 @@ class TestDistSimnetBowSparse2x2(TestDistBase):
...
@@ -53,7 +61,11 @@ class TestDistSimnetBowSparse2x2(TestDistBase):
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
}
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
self
.
check_with_place
(
"dist_simnet_bow.py"
,
"dist_simnet_bow.py"
,
delta
=
1e-5
,
delta
=
1e-5
,
...
@@ -67,7 +79,11 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
...
@@ -67,7 +79,11 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
self
.
_enforce_place
=
"CPU"
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
}
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
self
.
check_with_place
(
"dist_simnet_bow.py"
,
"dist_simnet_bow.py"
,
delta
=
100
,
delta
=
100
,
...
@@ -75,5 +91,59 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
...
@@ -75,5 +91,59 @@ class TestDistSimnetBow2x2SparseAsync(TestDistBase):
need_envs
=
need_envs
)
need_envs
=
need_envs
)
class
TestDistSimnetBow2x2LookupTableSync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'1'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
False
,
need_envs
=
need_envs
)
class
TestDistSimnetBow2x2LookupTableAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'1'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
100
,
check_error_log
=
False
,
need_envs
=
need_envs
)
class
TestDistSimnetBow2x2LookupTableNotContainLRSync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'1'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'0'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
False
,
need_envs
=
need_envs
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
38612695
...
@@ -194,6 +194,14 @@ class TestBook(unittest.TestCase):
...
@@ -194,6 +194,14 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
,
ref_level
=
1
))
self
.
assertIsNotNone
(
layers
.
sequence_expand
(
x
=
x
,
y
=
y
,
ref_level
=
1
))
print
(
str
(
program
))
print
(
str
(
program
))
def
test_sequence_unpad
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
length
=
layers
.
data
(
name
=
'length'
,
shape
=
[
1
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
sequence_unpad
(
x
=
x
,
length
=
length
))
print
(
str
(
program
))
def
test_lstm_unit
(
self
):
def
test_lstm_unit
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
浏览文件 @
38612695
...
@@ -19,33 +19,76 @@ import unittest
...
@@ -19,33 +19,76 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
def
create_selected_rows_and_tensor
(
scope
,
place
,
height
,
row_num
,
embedding_size
):
sr
=
scope
.
var
(
"@selected_rows@"
).
get_selected_rows
()
tensor
=
scope
.
var
(
"grad"
).
get_tensor
()
rows
=
np
.
random
.
random_integers
(
low
=
0
,
high
=
height
-
1
,
size
=
[
row_num
,
]).
astype
(
'int64'
)
sr_val
=
np
.
random
.
random
(
size
=
[
row_num
,
embedding_size
]).
astype
(
'float32'
)
sr
.
set_height
(
height
)
sr
.
set_rows
(
rows
)
sr
.
get_tensor
().
set
(
sr_val
,
place
)
tensor_val
=
np
.
zeros
(
shape
=
[
height
,
embedding_size
],
dtype
=
'float32'
)
for
i
in
range
(
row_num
):
row
=
rows
[
i
]
tensor_val
[
row
,
:]
=
tensor_val
[
row
,
:]
+
sr_val
[
i
,
:]
tensor
.
set
(
tensor_val
,
place
)
return
tensor_val
,
sr_val
class
TestBase
(
unittest
.
TestCase
):
class
TestBase
(
unittest
.
TestCase
):
def
setup
(
self
,
centered
,
epsilon
=
1e-6
):
def
setup
(
self
,
place
,
is_sparse
,
centered
,
size
,
row_num
=
None
,
epsilon
=
1e-6
):
np
.
random
.
seed
(
5
)
# fix seed
np
.
random
.
seed
(
5
)
# fix seed
self
.
scope
=
fluid
.
global_scope
()
self
.
place
=
place
self
.
param_name
=
"param"
self
.
param_name
=
"param"
self
.
param
=
np
.
random
.
random
(
(
123
,
321
)
).
astype
(
"float32"
)
self
.
param
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
mean_square_name
=
"mean_square"
self
.
mean_square_name
=
"mean_square"
self
.
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
mean_square
=
np
.
random
.
uniform
(
low
=
1
,
high
=
2
,
size
=
size
).
astype
(
"float32"
)
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad
=
np
.
random
.
random
(
(
123
,
321
)
).
astype
(
"float32"
)
self
.
mean_grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
self
.
lr_name
=
"lr"
self
.
lr_name
=
"lr"
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
grad_name
=
"grad"
self
.
grad_name
=
"grad"
self
.
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
is_sparse
=
is_sparse
if
self
.
is_sparse
:
self
.
grad_sr_name
=
"@selected_rows@"
self
.
grad
,
self
.
grad_sr
=
create_selected_rows_and_tensor
(
self
.
scope
,
place
,
size
[
0
],
row_num
,
size
[
1
])
else
:
self
.
grad
=
np
.
random
.
random
(
size
).
astype
(
"float32"
)
grad_tensor
=
self
.
scope
.
var
(
self
.
grad_name
).
get_tensor
()
grad_tensor
.
set
(
self
.
grad
,
place
)
self
.
moment_name
=
"moment"
self
.
moment_name
=
"moment"
self
.
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
self
.
moment
=
np
.
random
.
uniform
(
low
=
0
,
high
=
1
,
size
=
size
).
astype
(
"float32"
)
self
.
epsilon
=
epsilon
self
.
epsilon
=
epsilon
self
.
decay
=
0.9
self
.
decay
=
0.9
self
.
momentum
=
0.
0
self
.
momentum
=
0.
1
self
.
centered
=
centered
self
.
centered
=
centered
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
...
@@ -61,118 +104,122 @@ class TestBase(unittest.TestCase):
...
@@ -61,118 +104,122 @@ class TestBase(unittest.TestCase):
self
.
param_out
=
self
.
param
-
self
.
moment_out
self
.
param_out
=
self
.
param
-
self
.
moment_out
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
,
equal_nan
=
False
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
class
TestRmspropOp
(
TestBase
):
def
check_with_place
(
self
,
place
,
centered
,
epsilon
):
self
.
setup
(
centered
,
epsilon
)
scope
=
core
.
Scope
()
# create and initialize Param Variable
# create and initialize Param Variable
param
=
scope
.
var
(
self
.
param_name
).
get_tensor
()
self
.
param_tensor
=
self
.
scope
.
var
(
self
.
param_name
).
get_tensor
()
param
.
set
(
self
.
param
,
place
)
self
.
param_tensor
.
set
(
self
.
param
,
place
)
mean_square
=
scope
.
var
(
self
.
mean_square_name
).
get_tensor
()
self
.
mean_square_tensor
=
self
.
scope
.
var
(
mean_square
.
set
(
self
.
mean_square
,
place
)
self
.
mean_square_name
).
get_tensor
()
self
.
mean_square_tensor
.
set
(
self
.
mean_square
,
place
)
lr
=
scope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
=
s
elf
.
s
cope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
.
set
(
self
.
learning_rate
,
place
)
lr
.
set
(
self
.
learning_rate
,
place
)
grad
=
scope
.
var
(
self
.
grad
_name
).
get_tensor
()
self
.
moment_tensor
=
self
.
scope
.
var
(
self
.
moment
_name
).
get_tensor
()
grad
.
set
(
self
.
grad
,
place
)
self
.
moment_tensor
.
set
(
self
.
moment
,
place
)
moment
=
scope
.
var
(
self
.
moment_name
).
get_tensor
()
if
self
.
centered
:
moment
.
set
(
self
.
moment
,
place
)
self
.
mean_grad_tensor
=
self
.
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
self
.
mean_grad_tensor
.
set
(
self
.
mean_grad
,
place
)
# create and run sgd operator
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
if
self
.
centered
:
mean_grad
=
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
class
TestRmspropOp
(
TestBase
):
mean_grad
.
set
(
self
.
mean_grad
,
place
)
def
check_with_place
(
self
,
place
,
rmsprop_op
=
Operator
(
is_sparse
,
"rmsprop"
,
centered
,
Param
=
self
.
param_name
,
size
,
Grad
=
self
.
grad_name
,
row_num
=
None
,
MeanSquare
=
self
.
mean_square_name
,
epsilon
=
1e-6
):
MeanGrad
=
self
.
mean_grad_name
,
self
.
setup
(
place
,
is_sparse
,
centered
,
size
,
row_num
,
epsilon
)
Moment
=
self
.
moment_name
,
self
.
run_and_check
()
LearningRate
=
self
.
lr_name
,
ParamOut
=
self
.
param_name
,
def
run_and_check
(
self
):
MeanSquareOut
=
self
.
mean_square_name
,
grad_name
=
self
.
grad_sr_name
if
self
.
is_sparse
else
self
.
grad_name
MomentOut
=
self
.
moment_name
,
MeanGradOut
=
self
.
mean_grad_name
,
kwargs
=
{
epsilon
=
self
.
epsilon
,
'Param'
:
self
.
param_name
,
decay
=
self
.
decay
,
'Grad'
:
grad_name
,
momentum
=
self
.
momentum
,
'MeanSquare'
:
self
.
mean_square_name
,
centered
=
True
)
'Moment'
:
self
.
moment_name
,
else
:
'LearningRate'
:
self
.
lr_name
,
rmsprop_op
=
Operator
(
'ParamOut'
:
self
.
param_name
,
"rmsprop"
,
'MeanSquareOut'
:
self
.
mean_square_name
,
Param
=
self
.
param_name
,
'MomentOut'
:
self
.
moment_name
,
Grad
=
self
.
grad_name
,
'epsilon'
:
self
.
epsilon
,
MeanSquare
=
self
.
mean_square_name
,
'decay'
:
self
.
decay
,
Moment
=
self
.
moment_name
,
'momentum'
:
self
.
momentum
,
LearningRate
=
self
.
lr_name
,
'centered'
:
self
.
centered
ParamOut
=
self
.
param_name
,
}
MeanSquareOut
=
self
.
mean_square_name
,
MomentOut
=
self
.
moment_name
,
epsilon
=
self
.
epsilon
,
decay
=
self
.
decay
,
momentum
=
self
.
momentum
,
centered
=
False
)
rmsprop_op
.
run
(
scope
,
place
)
atol
=
1e-5
equal_nan
=
False
if
self
.
centered
:
if
self
.
centered
:
atol
=
1e-3
kwargs
[
'MeanGrad'
]
=
self
.
mean_grad_name
equal_nan
=
True
kwargs
[
'MeanGradOut'
]
=
self
.
mean_grad_name
rmsprop_op
=
Operator
(
'rmsprop'
,
**
kwargs
)
atol
=
1e-6
rmsprop_op
.
run
(
self
.
scope
,
self
.
place
)
self
.
check
(
self
.
check
(
np
.
array
(
mean_square
),
self
.
ms_out
,
place
,
self
.
mean_square_name
)
np
.
array
(
self
.
mean_square_tensor
),
self
.
ms_out
,
self
.
place
,
self
.
mean_square_name
,
atol
=
atol
)
self
.
check
(
self
.
check
(
np
.
array
(
moment
),
np
.
array
(
self
.
moment_tensor
),
self
.
moment_out
,
self
.
moment_out
,
place
,
self
.
place
,
self
.
moment_name
,
self
.
moment_name
,
atol
=
atol
,
atol
=
atol
)
equal_nan
=
equal_nan
)
self
.
check
(
self
.
check
(
np
.
array
(
param
),
np
.
array
(
self
.
param_tensor
),
self
.
param_out
,
self
.
param_out
,
place
,
self
.
place
,
self
.
param_name
,
self
.
param_name
,
atol
=
atol
,
atol
=
atol
)
equal_nan
=
equal_nan
)
if
self
.
centered
:
if
self
.
centered
:
self
.
check
(
self
.
check
(
np
.
array
(
mean_grad
),
self
.
mg_out
,
place
,
self
.
mean_grad_name
)
np
.
array
(
self
.
mean_grad_tensor
),
self
.
mg_out
,
self
.
place
,
self
.
mean_grad_name
)
def
test_rmsprop
(
self
):
def
test_rmsprop
(
self
):
places
=
[
core
.
CPUPlace
()]
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
places
.
append
(
core
.
CUDAPlace
(
0
))
size
=
(
128
,
320
)
for
place
in
places
:
for
place
in
places
:
self
.
check_with_place
(
place
,
False
,
1e-6
)
for
centered
in
[
False
,
True
]:
self
.
check_with_place
(
place
,
False
,
1e-10
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
True
,
1e-6
)
self
.
check_with_place
(
self
.
check_with_place
(
place
,
True
,
1e-10
)
place
,
is_sparse
=
False
,
centered
=
centered
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
512
,
size
=
size
)
with
fluid
.
scope_guard
(
core
.
Scope
()):
self
.
check_with_place
(
place
,
is_sparse
=
True
,
centered
=
centered
,
row_num
=
60
,
size
=
size
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_sequence_unpad_op.py
0 → 100644
浏览文件 @
38612695
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
six
import
numpy
as
np
from
op_test
import
OpTest
class
TestSequenceUnpadOp
(
OpTest
):
def
init
(
self
):
self
.
length
=
[
2
,
3
,
4
]
self
.
x_shape
=
(
3
,
5
)
self
.
dtype
=
"float32"
def
compute
(
self
):
assert
len
(
self
.
length
)
==
self
.
x_shape
[
0
]
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
out_lod
=
[
self
.
length
]
out
=
x
[
0
,
0
:
self
.
length
[
0
]]
for
i
in
six
.
moves
.
xrange
(
1
,
x
.
shape
[
0
]):
out
=
np
.
append
(
out
,
x
[
i
,
0
:
self
.
length
[
i
]],
axis
=
0
)
out_shape
=
(
sum
(
self
.
length
),
)
if
len
(
self
.
x_shape
)
==
2
:
out_shape
=
out_shape
+
(
1
,
)
else
:
out_shape
=
out_shape
+
self
.
x_shape
[
2
:]
self
.
inputs
=
{
'X'
:
x
,
'Length'
:
np
.
array
(
self
.
length
).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
}
self
.
outputs
=
{
'Out'
:
(
out
.
reshape
(
out_shape
),
out_lod
)}
def
setUp
(
self
):
self
.
op_type
=
'sequence_unpad'
self
.
init
()
self
.
compute
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequenceUnpadOp2
(
TestSequenceUnpadOp
):
def
init
(
self
):
self
.
length
=
[
2
,
3
,
4
]
self
.
x_shape
=
(
3
,
5
,
4
,
3
)
self
.
dtype
=
"float32"
class
TestSequenceUnpadOp3
(
TestSequenceUnpadOp
):
def
init
(
self
):
self
.
length
=
[
5
,
2
,
3
,
4
]
self
.
x_shape
=
(
4
,
5
,
3
,
3
,
6
)
self
.
dtype
=
"float64"
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
38612695
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录