Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a5aac614
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a5aac614
编写于
11月 30, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
skip cost when inference
上级
849bf9d0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
58 addition
and
21 deletion
+58
-21
benchmark/paddle/image/googlenet.py
benchmark/paddle/image/googlenet.py
+15
-5
benchmark/paddle/image/provider.py
benchmark/paddle/image/provider.py
+10
-4
benchmark/paddle/image/resnet.py
benchmark/paddle/image/resnet.py
+19
-8
benchmark/paddle/image/vgg.py
benchmark/paddle/image/vgg.py
+14
-4
未找到文件。
benchmark/paddle/image/googlenet.py
浏览文件 @
a5aac614
...
@@ -6,8 +6,15 @@ width = 224
...
@@ -6,8 +6,15 @@ width = 224
num_class
=
1000
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
128
)
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
128
)
use_gpu
=
get_config_arg
(
'use_gpu'
,
bool
,
True
)
use_gpu
=
get_config_arg
(
'use_gpu'
,
bool
,
True
)
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
define_py_data_sources2
(
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
...
@@ -146,7 +153,6 @@ def inception(name, input, channels, \
...
@@ -146,7 +153,6 @@ def inception(name, input, channels, \
return
cat
return
cat
lab
=
data_layer
(
name
=
"label"
,
size
=
1000
)
data
=
data_layer
(
name
=
"input"
,
size
=
3
*
height
*
width
)
data
=
data_layer
(
name
=
"input"
,
size
=
3
*
height
*
width
)
# stage 1
# stage 1
...
@@ -224,6 +230,10 @@ pool5 = img_pool_layer(
...
@@ -224,6 +230,10 @@ pool5 = img_pool_layer(
dropout
=
dropout_layer
(
name
=
"dropout"
,
input
=
pool5
,
dropout_rate
=
0.4
)
dropout
=
dropout_layer
(
name
=
"dropout"
,
input
=
pool5
,
dropout_rate
=
0.4
)
out3
=
fc_layer
(
out3
=
fc_layer
(
name
=
"output3"
,
input
=
dropout
,
size
=
1000
,
act
=
SoftmaxActivation
())
name
=
"output3"
,
input
=
dropout
,
size
=
1000
,
act
=
SoftmaxActivation
())
loss3
=
cross_entropy
(
name
=
'loss3'
,
input
=
out3
,
label
=
lab
)
outputs
(
loss3
)
if
is_infer
:
outputs
(
out3
)
else
:
lab
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss3
=
cross_entropy
(
name
=
'loss3'
,
input
=
out3
,
label
=
lab
)
outputs
(
loss3
)
benchmark/paddle/image/provider.py
浏览文件 @
a5aac614
...
@@ -13,8 +13,11 @@ def initHook(settings, height, width, color, num_class, **kwargs):
...
@@ -13,8 +13,11 @@ def initHook(settings, height, width, color, num_class, **kwargs):
settings
.
data_size
=
settings
.
height
*
settings
.
width
*
3
settings
.
data_size
=
settings
.
height
*
settings
.
width
*
3
else
:
else
:
settings
.
data_size
=
settings
.
height
*
settings
.
width
settings
.
data_size
=
settings
.
height
*
settings
.
width
settings
.
is_infer
=
kwargs
.
get
(
'is_infer'
,
False
)
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
),
integer_value
(
1
)]
if
settings
.
is_infer
:
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
)]
else
:
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
),
integer_value
(
1
)]
@
provider
(
@
provider
(
...
@@ -22,5 +25,8 @@ def initHook(settings, height, width, color, num_class, **kwargs):
...
@@ -22,5 +25,8 @@ def initHook(settings, height, width, color, num_class, **kwargs):
def
process
(
settings
,
file_list
):
def
process
(
settings
,
file_list
):
for
i
in
xrange
(
1024
):
for
i
in
xrange
(
1024
):
img
=
np
.
random
.
rand
(
1
,
settings
.
data_size
).
reshape
(
-
1
,
1
).
flatten
()
img
=
np
.
random
.
rand
(
1
,
settings
.
data_size
).
reshape
(
-
1
,
1
).
flatten
()
lab
=
random
.
randint
(
0
,
settings
.
num_class
-
1
)
if
settings
.
is_infer
:
yield
img
.
astype
(
'float32'
),
int
(
lab
)
yield
img
.
astype
(
'float32'
)
else
:
lab
=
random
.
randint
(
0
,
settings
.
num_class
-
1
)
yield
img
.
astype
(
'float32'
),
int
(
lab
)
benchmark/paddle/image/resnet.py
浏览文件 @
a5aac614
...
@@ -6,9 +6,15 @@ width = 224
...
@@ -6,9 +6,15 @@ width = 224
num_class
=
1000
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
"layer_num"
,
int
,
50
)
layer_num
=
get_config_arg
(
"layer_num"
,
int
,
50
)
is_test
=
get_config_arg
(
"is_test"
,
bool
,
False
)
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
define_py_data_sources2
(
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
...
@@ -45,7 +51,10 @@ def conv_bn_layer(name,
...
@@ -45,7 +51,10 @@ def conv_bn_layer(name,
act
=
LinearActivation
(),
act
=
LinearActivation
(),
bias_attr
=
False
)
bias_attr
=
False
)
return
batch_norm_layer
(
return
batch_norm_layer
(
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_test
)
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_infer
)
def
bottleneck_block
(
name
,
input
,
num_filters1
,
num_filters2
):
def
bottleneck_block
(
name
,
input
,
num_filters1
,
num_filters2
):
...
@@ -207,7 +216,9 @@ elif layer_num == 152:
...
@@ -207,7 +216,9 @@ elif layer_num == 152:
else
:
else
:
print
(
"Wrong layer number."
)
print
(
"Wrong layer number."
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
if
is_infer
:
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
outputs
(
resnet
)
inputs
(
img
,
lbl
)
else
:
outputs
(
loss
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
outputs
(
loss
)
benchmark/paddle/image/vgg.py
浏览文件 @
a5aac614
...
@@ -6,8 +6,15 @@ width = 224
...
@@ -6,8 +6,15 @@ width = 224
num_class
=
1000
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
'layer_num'
,
int
,
19
)
layer_num
=
get_config_arg
(
'layer_num'
,
int
,
19
)
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
define_py_data_sources2
(
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
,
"test.list"
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
...
@@ -98,6 +105,9 @@ elif layer_num == 19:
...
@@ -98,6 +105,9 @@ elif layer_num == 19:
else
:
else
:
print
(
"Wrong layer number."
)
print
(
"Wrong layer number."
)
lab
=
data_layer
(
'label'
,
num_class
)
if
is_infer
:
loss
=
cross_entropy
(
input
=
vgg
,
label
=
lab
)
outputs
(
vgg
)
outputs
(
loss
)
else
:
lab
=
data_layer
(
'label'
,
num_class
)
loss
=
cross_entropy
(
input
=
vgg
,
label
=
lab
)
outputs
(
loss
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录