From a5aac614108c4b2b6d88d0c3446e4184911a319c Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Thu, 30 Nov 2017 14:24:35 +0800 Subject: [PATCH] skip cost when inference --- benchmark/paddle/image/googlenet.py | 20 +++++++++++++++----- benchmark/paddle/image/provider.py | 14 ++++++++++---- benchmark/paddle/image/resnet.py | 27 +++++++++++++++++++-------- benchmark/paddle/image/vgg.py | 18 ++++++++++++++---- 4 files changed, 58 insertions(+), 21 deletions(-) diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py index 5b1f0ca00..d3dc0506d 100644 --- a/benchmark/paddle/image/googlenet.py +++ b/benchmark/paddle/image/googlenet.py @@ -6,8 +6,15 @@ width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) use_gpu = get_config_arg('use_gpu', bool, True) - -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +is_infer = get_config_arg("is_infer", bool, False) + +args = { + 'height': height, + 'width': width, + 'color': True, + 'num_class': num_class, + 'is_infer': is_infer +} define_py_data_sources2( "train.list", "test.list", module="provider", obj="process", args=args) @@ -146,7 +153,6 @@ def inception(name, input, channels, \ return cat -lab = data_layer(name="label", size=1000) data = data_layer(name="input", size=3 * height * width) # stage 1 @@ -224,6 +230,10 @@ pool5 = img_pool_layer( dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4) out3 = fc_layer( name="output3", input=dropout, size=1000, act=SoftmaxActivation()) -loss3 = cross_entropy(name='loss3', input=out3, label=lab) -outputs(loss3) +if is_infer: + outputs(out3) +else: + lab = data_layer(name="label", size=num_class) + loss3 = cross_entropy(name='loss3', input=out3, label=lab) + outputs(loss3) diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py index 4703944c8..a3a6b6fc4 100644 --- a/benchmark/paddle/image/provider.py +++ b/benchmark/paddle/image/provider.py @@ -13,8 +13,11 @@ def initHook(settings, height, width, color, num_class, **kwargs): settings.data_size = settings.height * settings.width * 3 else: settings.data_size = settings.height * settings.width - - settings.slots = [dense_vector(settings.data_size), integer_value(1)] + settings.is_infer = kwargs.get('is_infer', False) + if settings.is_infer: + settings.slots = [dense_vector(settings.data_size)] + else: + settings.slots = [dense_vector(settings.data_size), integer_value(1)] @provider( @@ -22,5 +25,8 @@ def initHook(settings, height, width, color, num_class, **kwargs): def process(settings, file_list): for i in xrange(1024): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() - lab = random.randint(0, settings.num_class - 1) - yield img.astype('float32'), int(lab) + if settings.is_infer: + yield img.astype('float32') + else: + lab = random.randint(0, settings.num_class - 1) + yield img.astype('float32'), int(lab) diff --git a/benchmark/paddle/image/resnet.py b/benchmark/paddle/image/resnet.py index f8c1c2df8..163394e56 100644 --- a/benchmark/paddle/image/resnet.py +++ b/benchmark/paddle/image/resnet.py @@ -6,9 +6,15 @@ width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg("layer_num", int, 50) -is_test = get_config_arg("is_test", bool, False) - -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +is_infer = get_config_arg("is_infer", bool, False) + +args = { + 'height': height, + 'width': width, + 'color': True, + 'num_class': num_class, + 'is_infer': is_infer +} define_py_data_sources2( "train.list", "test.list", module="provider", obj="process", args=args) @@ -45,7 +51,10 @@ def conv_bn_layer(name, act=LinearActivation(), bias_attr=False) return batch_norm_layer( - name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test) + name=name + "_bn", + input=tmp, + act=active_type, + use_global_stats=is_infer) def bottleneck_block(name, input, num_filters1, num_filters2): @@ -207,7 +216,9 @@ elif layer_num == 152: else: print("Wrong layer number.") -lbl = data_layer(name="label", size=num_class) -loss = cross_entropy(name='loss', input=resnet, label=lbl) -inputs(img, lbl) -outputs(loss) +if is_infer: + outputs(resnet) +else: + lbl = data_layer(name="label", size=num_class) + loss = cross_entropy(name='loss', input=resnet, label=lbl) + outputs(loss) diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py index 97f4dbe0e..2d8075bcf 100644 --- a/benchmark/paddle/image/vgg.py +++ b/benchmark/paddle/image/vgg.py @@ -6,8 +6,15 @@ width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg('layer_num', int, 19) +is_infer = get_config_arg("is_infer", bool, False) -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +args = { + 'height': height, + 'width': width, + 'color': True, + 'num_class': num_class, + 'is_infer': is_infer +} define_py_data_sources2( "train.list", "test.list", module="provider", obj="process", args=args) @@ -98,6 +105,9 @@ elif layer_num == 19: else: print("Wrong layer number.") -lab = data_layer('label', num_class) -loss = cross_entropy(input=vgg, label=lab) -outputs(loss) +if is_infer: + outputs(vgg) +else: + lab = data_layer('label', num_class) + loss = cross_entropy(input=vgg, label=lab) + outputs(loss) -- GitLab