Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
99c63aed
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99c63aed
编写于
7月 29, 2021
作者:
C
cnn
提交者:
GitHub
7月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
s2anet update (#3817)
上级
7f000edb
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
267 addition
and
63 deletion
+267
-63
configs/dota/README.md
configs/dota/README.md
+4
-3
configs/dota/_base_/s2anet.yml
configs/dota/_base_/s2anet.yml
+0
-1
configs/dota/_base_/s2anet_optimizer_2x.yml
configs/dota/_base_/s2anet_optimizer_2x.yml
+20
-0
configs/dota/s2anet_1x_spine.yml
configs/dota/s2anet_1x_spine.yml
+4
-2
configs/dota/s2anet_alignconv_2x_dota.yml
configs/dota/s2anet_alignconv_2x_dota.yml
+8
-5
configs/dota/s2anet_conv_1x_dota.yml
configs/dota/s2anet_conv_1x_dota.yml
+7
-0
ppdet/modeling/heads/s2anet_head.py
ppdet/modeling/heads/s2anet_head.py
+221
-50
ppdet/modeling/proposal_generator/target_layer.py
ppdet/modeling/proposal_generator/target_layer.py
+3
-2
未找到文件。
configs/dota/README.md
浏览文件 @
99c63aed
...
...
@@ -129,9 +129,10 @@ python3.7 tools/infer.py -c configs/dota/s2anet_1x_dota.yml -o weights=./weights
### S2ANet模型
| 模型 | GPU个数 | Conv类型 | mAP | 模型下载 | 配置文件 |
|:-----------:|:-------:|:----------:|:--------:| :----------:| :---------: |
| S2ANet | 8 | Conv | 71.42 |
[
model
](
https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/dota/s2anet_conv_1x_dota.yml
)
|
| 模型 | Conv类型 | mAP | 模型下载 | 配置文件 |
|:-----------:|:----------:|:--------:| :----------:| :---------: |
| S2ANet | Conv | 71.42 |
[
model
](
https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_conv_1x_dota.yml
)
|
| S2ANet | AlignConv | 74.0 |
[
model
](
https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_alignconv_2x_dota.yml
)
|
**注意:**
这里使用
`multiclass_nms`
,与原作者使用nms略有不同,精度相比原始论文中高0.15 (71.27-->71.42)。
...
...
configs/dota/_base_/s2anet.yml
浏览文件 @
99c63aed
...
...
@@ -53,4 +53,3 @@ S2ANetBBoxPostProcess:
score_threshold
:
0.05
nms_threshold
:
0.1
normalized
:
False
#background_label: -1
configs/dota/_base_/s2anet_optimizer_2x.yml
0 → 100644
浏览文件 @
99c63aed
epoch
:
24
LearningRate
:
base_lr
:
0.005
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
14
,
20
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
clip_grad_by_norm
:
35
configs/dota/s2anet_1x_spine.yml
浏览文件 @
99c63aed
...
...
@@ -24,5 +24,7 @@ S2ANetHead:
align_conv_type
:
'
AlignConv'
# AlignConv Conv
align_conv_size
:
3
use_sigmoid_cls
:
True
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
reg_loss_type
:
gwd
use_paddle_anchor
:
False
configs/dota/s2anet_
1
x_dota.yml
→
configs/dota/s2anet_
alignconv_2
x_dota.yml
浏览文件 @
99c63aed
it
_BASE_
:
[
_BASE_
:
[
'
../datasets/dota.yml'
,
'
../runtime.yml'
,
'
_base_/s2anet_optimizer_
1
x.yml'
,
'
_base_/s2anet_optimizer_
2
x.yml'
,
'
_base_/s2anet.yml'
,
'
_base_/s2anet_reader.yml'
,
]
weights
:
output/s2anet_1x_dota/model_final
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights
:
output/s2anet_alignconv_2x_dota/model_final
S2ANetHead
:
anchor_strides
:
[
8
,
16
,
32
,
64
,
128
]
...
...
@@ -19,5 +21,6 @@ S2ANetHead:
align_conv_type
:
'
AlignConv'
# AlignConv Conv
align_conv_size
:
3
use_sigmoid_cls
:
True
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.1
]
cls_loss_weight
:
[
1.1
,
1.05
]
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
#reg_loss_type: 'l1' # 'l1' 'gwd'
configs/dota/s2anet_conv_1x_dota.yml
浏览文件 @
99c63aed
...
...
@@ -7,6 +7,13 @@ _BASE_: [
]
weights
:
output/s2anet_1x_dota/model_final
ResNet
:
depth
:
50
variant
:
b
norm_type
:
bn
return_idx
:
[
1
,
2
,
3
]
num_stages
:
4
S2ANetHead
:
anchor_strides
:
[
8
,
16
,
32
,
64
,
128
]
anchor_scales
:
[
4
]
...
...
ppdet/modeling/heads/s2anet_head.py
浏览文件 @
99c63aed
...
...
@@ -102,8 +102,7 @@ class S2ANetAnchorGenerator(nn.Layer):
valid_xx
,
valid_yy
=
self
.
_meshgrid
(
valid_x
,
valid_y
)
valid
=
valid_xx
&
valid_yy
valid
=
paddle
.
reshape
(
valid
,
[
-
1
,
1
])
valid
=
paddle
.
expand
(
valid
,
[
-
1
,
self
.
num_base_anchors
]).
reshape
([
-
1
])
valid
=
paddle
.
expand
(
valid
,
[
-
1
,
self
.
num_base_anchors
]).
reshape
([
-
1
])
return
valid
...
...
@@ -179,9 +178,12 @@ class AlignConv(nn.Layer):
offset_x
=
x_anchor
-
x_conv
offset_y
=
y_anchor
-
y_conv
offset
=
paddle
.
stack
([
offset_y
,
offset_x
],
axis
=-
1
)
offset
=
paddle
.
reshape
(
offset
,
[
feat_h
*
feat_w
,
self
.
kernel_size
*
self
.
kernel_size
*
2
])
offset
=
paddle
.
reshape
(
offset
,
[
feat_h
*
feat_w
,
self
.
kernel_size
*
self
.
kernel_size
*
2
])
offset
=
paddle
.
transpose
(
offset
,
[
1
,
0
])
offset
=
paddle
.
reshape
(
offset
,
[
1
,
self
.
kernel_size
*
self
.
kernel_size
*
2
,
feat_h
,
feat_w
])
offset
=
paddle
.
reshape
(
offset
,
[
1
,
self
.
kernel_size
*
self
.
kernel_size
*
2
,
feat_h
,
feat_w
])
return
offset
def
forward
(
self
,
x
,
refine_anchors
,
featmap_size
,
stride
):
...
...
@@ -260,8 +262,8 @@ class S2ANetHead(nn.Layer):
# anchor
self
.
anchor_generators
=
[]
for
anchor_base
in
self
.
anchor_base_sizes
:
self
.
anchor_generators
.
append
(
S2ANetAnchorGenerator
(
anchor_base
,
anchor_scales
,
self
.
anchor_generators
.
append
(
S2ANetAnchorGenerator
(
anchor_base
,
anchor_scales
,
anchor_ratios
))
self
.
anchor_generators
=
nn
.
LayerList
(
self
.
anchor_generators
)
...
...
@@ -440,8 +442,7 @@ class S2ANetHead(nn.Layer):
init_anchors
=
paddle
.
to_tensor
(
init_anchors
,
dtype
=
'float32'
)
NA
=
featmap_size
[
0
]
*
featmap_size
[
1
]
init_anchors
=
paddle
.
reshape
(
init_anchors
,
[
NA
,
4
])
init_anchors
=
paddle
.
reshape
(
init_anchors
,
[
NA
,
4
])
init_anchors
=
self
.
rect2rbox
(
init_anchors
)
self
.
base_anchors_list
.
append
(
init_anchors
)
...
...
@@ -474,18 +475,19 @@ class S2ANetHead(nn.Layer):
# [N, CLS, H, W] --> [N, H, W, CLS]
odm_cls_score
=
odm_cls_score
.
transpose
([
0
,
2
,
3
,
1
])
odm_cls_score_shape
=
odm_cls_score
.
shape
odm_cls_score_reshape
=
paddle
.
reshape
(
odm_cls_score
,
[
odm_cls_score_shape
[
0
],
odm_cls_score_shape
[
1
]
*
odm_cls_score_shape
[
2
],
self
.
cls_out_channels
])
odm_cls_score_reshape
=
paddle
.
reshape
(
odm_cls_score
,
[
odm_cls_score_shape
[
0
],
odm_cls_score_shape
[
1
]
*
odm_cls_score_shape
[
2
],
self
.
cls_out_channels
])
odm_cls_branch_list
.
append
(
odm_cls_score_reshape
)
odm_bbox_pred
=
self
.
odm_reg
(
odm_reg_feat
)
# [N, 5, H, W] --> [N, H, W, 5]
odm_bbox_pred
=
odm_bbox_pred
.
transpose
([
0
,
2
,
3
,
1
])
odm_bbox_pred_reshape
=
paddle
.
reshape
(
odm_bbox_pred
,
[
-
1
,
5
])
odm_bbox_pred_reshape
=
paddle
.
unsqueeze
(
odm_bbox_pred_reshape
,
axis
=
0
)
odm_bbox_pred_reshape
=
paddle
.
reshape
(
odm_bbox_pred
,
[
-
1
,
5
])
odm_bbox_pred_reshape
=
paddle
.
unsqueeze
(
odm_bbox_pred_reshape
,
axis
=
0
)
odm_reg_branch_list
.
append
(
odm_bbox_pred_reshape
)
self
.
s2anet_head_out
=
(
fam_cls_branch_list
,
fam_reg_branch_list
,
...
...
@@ -499,12 +501,8 @@ class S2ANetHead(nn.Layer):
odm_cls_branch_list
=
self
.
s2anet_head_out
[
2
]
odm_reg_branch_list
=
self
.
s2anet_head_out
[
3
]
pred_scores
,
pred_bboxes
=
self
.
get_bboxes
(
odm_cls_branch_list
,
odm_reg_branch_list
,
refine_anchors
,
nms_pre
,
self
.
cls_out_channels
,
self
.
use_sigmoid_cls
)
odm_cls_branch_list
,
odm_reg_branch_list
,
refine_anchors
,
nms_pre
,
self
.
cls_out_channels
,
self
.
use_sigmoid_cls
)
return
pred_scores
,
pred_bboxes
def
smooth_l1_loss
(
self
,
pred
,
label
,
delta
=
1.0
/
9.0
):
...
...
@@ -523,8 +521,8 @@ class S2ANetHead(nn.Layer):
return
loss
def
get_fam_loss
(
self
,
fam_target
,
s2anet_head_out
,
reg_loss_type
=
'gwd'
):
(
labels
,
label_weights
,
bbox_targets
,
bbox_weights
,
pos_ind
s
,
neg_inds
)
=
fam_target
(
labels
,
label_weights
,
bbox_targets
,
bbox_weights
,
bbox_gt_bboxe
s
,
pos_inds
,
neg_inds
)
=
fam_target
fam_cls_branch_list
,
fam_reg_branch_list
,
odm_cls_branch_list
,
odm_reg_branch_list
=
s2anet_head_out
fam_cls_losses
=
[]
...
...
@@ -543,7 +541,6 @@ class S2ANetHead(nn.Layer):
feat_bbox_targets
=
bbox_targets
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
feat_bbox_weights
=
bbox_weights
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
st_idx
+=
feat_anchor_num
# step2: calc cls loss
feat_labels
=
feat_labels
.
reshape
(
-
1
)
...
...
@@ -590,18 +587,53 @@ class S2ANetHead(nn.Layer):
fam_bbox_pred
=
paddle
.
reshape
(
fam_bbox_pred
,
[
-
1
,
5
])
fam_bbox
=
self
.
smooth_l1_loss
(
fam_bbox_pred
,
feat_bbox_targets
)
# iou_factor
fam_bbox
=
self
.
smooth_l1_loss
(
fam_bbox_pred
,
feat_bbox_targets
)
loss_weight
=
paddle
.
to_tensor
(
self
.
reg_loss_weight
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_bbox
=
paddle
.
multiply
(
fam_bbox
,
loss_weight
)
feat_bbox_weights
=
paddle
.
to_tensor
(
feat_bbox_weights
,
stop_gradient
=
True
)
if
reg_loss_type
==
'l1'
:
fam_bbox
=
self
.
smooth_l1_loss
(
fam_bbox_pred
,
feat_bbox_targets
)
loss_weight
=
paddle
.
to_tensor
(
self
.
reg_loss_weight
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_bbox
=
paddle
.
multiply
(
fam_bbox
,
loss_weight
)
feat_bbox_weights
=
paddle
.
to_tensor
(
feat_bbox_weights
,
stop_gradient
=
True
)
fam_bbox
=
fam_bbox
*
feat_bbox_weights
fam_bbox_total
=
paddle
.
sum
(
fam_bbox
)
/
num_total_samples
elif
reg_loss_type
==
'iou'
or
reg_loss_type
==
'gwd'
:
fam_bbox
=
paddle
.
sum
(
fam_bbox
,
axis
=-
1
)
feat_bbox_weights
=
paddle
.
sum
(
feat_bbox_weights
,
axis
=-
1
)
try
:
from
rbox_iou_ops
import
rbox_iou
except
Exception
as
e
:
print
(
"import custom_ops error, try install rbox_iou_ops "
\
"following ppdet/ext_op/README.md"
,
e
)
sys
.
stdout
.
flush
()
sys
.
exit
(
-
1
)
# calc iou
fam_bbox_decode
=
self
.
delta2rbox
(
self
.
base_anchors_list
[
idx
],
fam_bbox_pred
)
bbox_gt_bboxes
=
paddle
.
to_tensor
(
bbox_gt_bboxes
,
dtype
=
fam_bbox_decode
.
dtype
,
place
=
fam_bbox_decode
.
place
)
bbox_gt_bboxes
.
stop_gradient
=
True
iou
=
rbox_iou
(
fam_bbox_decode
,
bbox_gt_bboxes
)
iou
=
paddle
.
diag
(
iou
)
if
reg_loss_type
==
'iou'
:
EPS
=
paddle
.
to_tensor
(
1e-8
,
dtype
=
'float32'
,
stop_gradient
=
True
)
iou_factor
=
-
1.0
*
paddle
.
log
(
iou
+
EPS
)
/
(
fam_bbox
+
EPS
)
iou_factor
.
stop_gradient
=
True
#fam_bbox = fam_bbox * iou_factor
elif
reg_loss_type
==
'gwd'
:
bbox_gt_bboxes_level
=
bbox_gt_bboxes
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
fam_bbox_total
=
self
.
gwd_loss
(
fam_bbox_decode
,
bbox_gt_bboxes_level
)
fam_bbox_total
=
fam_bbox_total
*
feat_bbox_weights
fam_bbox_total
=
paddle
.
sum
(
fam_bbox_total
)
fam_bbox_losses
.
append
(
fam_bbox_total
)
st_idx
+=
feat_anchor_num
fam_cls_loss
=
paddle
.
add_n
(
fam_cls_losses
)
fam_cls_loss_weight
=
paddle
.
to_tensor
(
...
...
@@ -611,8 +643,8 @@ class S2ANetHead(nn.Layer):
return
fam_cls_loss
,
fam_reg_loss
def
get_odm_loss
(
self
,
odm_target
,
s2anet_head_out
,
reg_loss_type
=
'gwd'
):
(
labels
,
label_weights
,
bbox_targets
,
bbox_weights
,
pos_ind
s
,
neg_inds
)
=
odm_target
(
labels
,
label_weights
,
bbox_targets
,
bbox_weights
,
bbox_gt_bboxe
s
,
pos_inds
,
neg_inds
)
=
odm_target
fam_cls_branch_list
,
fam_reg_branch_list
,
odm_cls_branch_list
,
odm_reg_branch_list
=
s2anet_head_out
odm_cls_losses
=
[]
...
...
@@ -621,7 +653,7 @@ class S2ANetHead(nn.Layer):
num_total_samples
=
len
(
pos_inds
)
+
len
(
neg_inds
)
if
self
.
sampling
else
len
(
pos_inds
)
num_total_samples
=
max
(
1
,
num_total_samples
)
for
idx
,
feat_size
in
enumerate
(
self
.
featmap_sizes_list
):
feat_anchor_num
=
feat_size
[
0
]
*
feat_size
[
1
]
...
...
@@ -631,7 +663,6 @@ class S2ANetHead(nn.Layer):
feat_bbox_targets
=
bbox_targets
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
feat_bbox_weights
=
bbox_weights
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
st_idx
+=
feat_anchor_num
# step2: calc cls loss
feat_labels
=
feat_labels
.
reshape
(
-
1
)
...
...
@@ -676,19 +707,53 @@ class S2ANetHead(nn.Layer):
odm_bbox_pred
=
paddle
.
squeeze
(
odm_bbox_pred
,
axis
=
0
)
odm_bbox_pred
=
paddle
.
reshape
(
odm_bbox_pred
,
[
-
1
,
5
])
odm_bbox
=
self
.
smooth_l1_loss
(
odm_bbox_pred
,
feat_bbox_targets
)
# iou_factor odm not use_iou
loss_weight
=
paddle
.
to_tensor
(
self
.
reg_loss_weight
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_bbox
=
paddle
.
multiply
(
odm_bbox
,
loss_weight
)
feat_bbox_weights
=
paddle
.
to_tensor
(
feat_bbox_weights
,
stop_gradient
=
True
)
if
reg_loss_type
==
'l1'
:
odm_bbox
=
self
.
smooth_l1_loss
(
odm_bbox_pred
,
feat_bbox_targets
)
loss_weight
=
paddle
.
to_tensor
(
self
.
reg_loss_weight
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_bbox
=
paddle
.
multiply
(
odm_bbox
,
loss_weight
)
feat_bbox_weights
=
paddle
.
to_tensor
(
feat_bbox_weights
,
stop_gradient
=
True
)
odm_bbox
=
odm_bbox
*
feat_bbox_weights
odm_bbox_total
=
paddle
.
sum
(
odm_bbox
)
/
num_total_samples
elif
reg_loss_type
==
'iou'
or
reg_loss_type
==
'gwd'
:
odm_bbox
=
paddle
.
sum
(
odm_bbox
,
axis
=-
1
)
feat_bbox_weights
=
paddle
.
sum
(
feat_bbox_weights
,
axis
=-
1
)
try
:
from
rbox_iou_ops
import
rbox_iou
except
Exception
as
e
:
print
(
"import custom_ops error, try install rbox_iou_ops "
\
"following ppdet/ext_op/README.md"
,
e
)
sys
.
stdout
.
flush
()
sys
.
exit
(
-
1
)
# calc iou
odm_bbox_decode
=
self
.
delta2rbox
(
self
.
refine_anchor_list
[
idx
],
odm_bbox_pred
)
bbox_gt_bboxes
=
paddle
.
to_tensor
(
bbox_gt_bboxes
,
dtype
=
odm_bbox_decode
.
dtype
,
place
=
odm_bbox_decode
.
place
)
bbox_gt_bboxes
.
stop_gradient
=
True
iou
=
rbox_iou
(
odm_bbox_decode
,
bbox_gt_bboxes
)
iou
=
paddle
.
diag
(
iou
)
if
reg_loss_type
==
'iou'
:
EPS
=
paddle
.
to_tensor
(
1e-8
,
dtype
=
'float32'
,
stop_gradient
=
True
)
iou_factor
=
-
1.0
*
paddle
.
log
(
iou
+
EPS
)
/
(
odm_bbox
+
EPS
)
iou_factor
.
stop_gradient
=
True
# odm_bbox = odm_bbox * iou_factor
elif
reg_loss_type
==
'gwd'
:
bbox_gt_bboxes_level
=
bbox_gt_bboxes
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
odm_bbox_total
=
self
.
gwd_loss
(
odm_bbox_decode
,
bbox_gt_bboxes_level
)
odm_bbox_total
=
odm_bbox_total
*
feat_bbox_weights
odm_bbox_total
=
paddle
.
sum
(
odm_bbox_total
)
odm_bbox_losses
.
append
(
odm_bbox_total
)
st_idx
+=
feat_anchor_num
odm_cls_loss
=
paddle
.
add_n
(
odm_cls_losses
)
odm_cls_loss_weight
=
paddle
.
to_tensor
(
...
...
@@ -737,11 +802,12 @@ class S2ANetHead(nn.Layer):
fam_reg_loss_lst
.
append
(
im_fam_reg_loss
)
# ODM
np_refine_anchors_list
=
paddle
.
concat
(
self
.
refine_anchor_list
).
numpy
()
np_refine_anchors_list
=
paddle
.
concat
(
self
.
refine_anchor_list
).
numpy
()
np_refine_anchors_list
=
np
.
concatenate
(
np_refine_anchors_list
)
np_refine_anchors_list
=
np_refine_anchors_list
.
reshape
(
-
1
,
5
)
im_odm_target
=
self
.
anchor_assign
(
np_refine_anchors_list
,
gt_bboxes
,
gt_labels
,
is_crowd
)
im_odm_target
=
self
.
anchor_assign
(
np_refine_anchors_list
,
gt_
bboxes
,
gt_
labels
,
is_crowd
)
if
im_odm_target
is
not
None
:
im_odm_cls_loss
,
im_odm_reg_loss
=
self
.
get_odm_loss
(
...
...
@@ -841,7 +907,8 @@ class S2ANetHead(nn.Layer):
deltas
=
paddle
.
reshape
(
deltas
,
[
-
1
,
5
])
rrois
=
paddle
.
reshape
(
rrois
,
[
-
1
,
5
])
# fix dy2st bug denorm_deltas = deltas * self.stds + self.means
denorm_deltas
=
paddle
.
add
(
paddle
.
multiply
(
deltas
,
self
.
stds
),
self
.
means
)
denorm_deltas
=
paddle
.
add
(
paddle
.
multiply
(
deltas
,
self
.
stds
),
self
.
means
)
dx
=
denorm_deltas
[:,
0
]
dy
=
denorm_deltas
[:,
1
]
...
...
@@ -872,9 +939,7 @@ class S2ANetHead(nn.Layer):
bboxes
=
paddle
.
stack
([
gx
,
gy
,
gw
,
gh
,
ga
],
axis
=-
1
)
return
bboxes
def
bbox_decode
(
self
,
bbox_preds
,
anchors
):
def
bbox_decode
(
self
,
bbox_preds
,
anchors
):
"""decode bbox from deltas
Args:
bbox_preds: [N,H,W,5]
...
...
@@ -886,3 +951,109 @@ class S2ANetHead(nn.Layer):
bbox_delta
=
paddle
.
reshape
(
bbox_preds
,
[
-
1
,
5
])
bboxes
=
self
.
delta2rbox
(
anchors
,
bbox_delta
)
return
bboxes
def
trace
(
self
,
A
):
tr
=
paddle
.
diagonal
(
A
,
axis1
=-
2
,
axis2
=-
1
)
tr
=
paddle
.
sum
(
tr
,
axis
=-
1
)
return
tr
def
sqrt_newton_schulz_autograd
(
self
,
A
,
numIters
):
A_shape
=
A
.
shape
batchSize
=
A_shape
[
0
]
dim
=
A_shape
[
1
]
normA
=
A
*
A
normA
=
paddle
.
sum
(
normA
,
axis
=
1
)
normA
=
paddle
.
sum
(
normA
,
axis
=
1
)
normA
=
paddle
.
sqrt
(
normA
)
normA1
=
normA
.
reshape
([
batchSize
,
1
,
1
])
Y
=
paddle
.
divide
(
A
,
paddle
.
expand_as
(
normA1
,
A
))
I
=
paddle
.
eye
(
dim
,
dim
).
reshape
([
1
,
dim
,
dim
])
l0
=
[]
for
i
in
range
(
batchSize
):
l0
.
append
(
I
)
I
=
paddle
.
concat
(
l0
,
axis
=
0
)
I
.
stop_gradient
=
False
Z
=
paddle
.
eye
(
dim
,
dim
).
reshape
([
1
,
dim
,
dim
])
l1
=
[]
for
i
in
range
(
batchSize
):
l1
.
append
(
Z
)
Z
=
paddle
.
concat
(
l1
,
axis
=
0
)
Z
.
stop_gradient
=
False
for
i
in
range
(
numIters
):
T
=
0.5
*
(
3.0
*
I
-
Z
.
bmm
(
Y
))
Y
=
Y
.
bmm
(
T
)
Z
=
T
.
bmm
(
Z
)
sA
=
Y
*
paddle
.
sqrt
(
normA1
).
reshape
([
batchSize
,
1
,
1
])
sA
=
paddle
.
expand_as
(
sA
,
A
)
return
sA
def
wasserstein_distance_sigma
(
sigma1
,
sigma2
):
wasserstein_distance_item2
=
paddle
.
matmul
(
sigma1
,
sigma1
)
+
paddle
.
matmul
(
sigma2
,
sigma2
)
-
2
*
self
.
sqrt_newton_schulz_autograd
(
paddle
.
matmul
(
paddle
.
matmul
(
sigma1
,
paddle
.
matmul
(
sigma2
,
sigma2
)),
sigma1
),
10
)
wasserstein_distance_item2
=
self
.
trace
(
wasserstein_distance_item2
)
return
wasserstein_distance_item2
def
xywhr2xyrs
(
self
,
xywhr
):
xywhr
=
paddle
.
reshape
(
xywhr
,
[
-
1
,
5
])
xy
=
xywhr
[:,
:
2
]
wh
=
paddle
.
clip
(
xywhr
[:,
2
:
4
],
min
=
1e-7
,
max
=
1e7
)
r
=
xywhr
[:,
4
]
cos_r
=
paddle
.
cos
(
r
)
sin_r
=
paddle
.
sin
(
r
)
R
=
paddle
.
stack
(
(
cos_r
,
-
sin_r
,
sin_r
,
cos_r
),
axis
=-
1
).
reshape
([
-
1
,
2
,
2
])
S
=
0.5
*
paddle
.
nn
.
functional
.
diag_embed
(
wh
)
return
xy
,
R
,
S
def
gwd_loss
(
self
,
pred
,
target
,
fun
=
'log'
,
tau
=
1.0
,
alpha
=
1.0
,
normalize
=
False
):
xy_p
,
R_p
,
S_p
=
self
.
xywhr2xyrs
(
pred
)
xy_t
,
R_t
,
S_t
=
self
.
xywhr2xyrs
(
target
)
xy_distance
=
(
xy_p
-
xy_t
).
square
().
sum
(
axis
=-
1
)
Sigma_p
=
R_p
.
matmul
(
S_p
.
square
()).
matmul
(
R_p
.
transpose
([
0
,
2
,
1
]))
Sigma_t
=
R_t
.
matmul
(
S_t
.
square
()).
matmul
(
R_t
.
transpose
([
0
,
2
,
1
]))
whr_distance
=
paddle
.
diagonal
(
S_p
,
axis1
=-
2
,
axis2
=-
1
).
square
().
sum
(
axis
=-
1
)
whr_distance
=
whr_distance
+
paddle
.
diagonal
(
S_t
,
axis1
=-
2
,
axis2
=-
1
).
square
().
sum
(
axis
=-
1
)
_t
=
Sigma_p
.
matmul
(
Sigma_t
)
_t_tr
=
paddle
.
diagonal
(
_t
,
axis1
=-
2
,
axis2
=-
1
).
sum
(
axis
=-
1
)
_t_det_sqrt
=
paddle
.
diagonal
(
S_p
,
axis1
=-
2
,
axis2
=-
1
).
prod
(
axis
=-
1
)
_t_det_sqrt
=
_t_det_sqrt
*
paddle
.
diagonal
(
S_t
,
axis1
=-
2
,
axis2
=-
1
).
prod
(
axis
=-
1
)
whr_distance
=
whr_distance
+
(
-
2
)
*
(
(
_t_tr
+
2
*
_t_det_sqrt
).
clip
(
0
).
sqrt
())
distance
=
(
xy_distance
+
alpha
*
alpha
*
whr_distance
).
clip
(
0
)
if
normalize
:
wh_p
=
pred
[...,
2
:
4
].
clip
(
min
=
1e-7
,
max
=
1e7
)
wh_t
=
target
[...,
2
:
4
].
clip
(
min
=
1e-7
,
max
=
1e7
)
scale
=
((
wh_p
.
log
()
+
wh_t
.
log
()).
sum
(
dim
=-
1
)
/
4
).
exp
()
distance
=
distance
/
scale
if
fun
==
'log'
:
distance
=
paddle
.
log1p
(
distance
)
if
tau
>=
1.0
:
return
1
-
1
/
(
tau
+
distance
)
return
distance
ppdet/modeling/proposal_generator/target_layer.py
浏览文件 @
99c63aed
...
...
@@ -451,16 +451,17 @@ class RBoxAssigner(object):
anchors_num
=
anchors
.
shape
[
0
]
bbox_targets
=
np
.
zeros_like
(
anchors
)
bbox_weights
=
np
.
zeros_like
(
anchors
)
bbox_gt_bboxes
=
np
.
zeros_like
(
anchors
)
pos_labels
=
np
.
ones
(
anchors_num
,
dtype
=
np
.
int32
)
*
-
1
pos_labels_weights
=
np
.
zeros
(
anchors_num
,
dtype
=
np
.
float32
)
pos_sampled_anchors
=
anchors
[
pos_inds
]
#print('ancho target pos_inds', pos_inds, len(pos_inds))
pos_sampled_gt_boxes
=
gt_bboxes
[
anchor_gt_bbox_inds
[
pos_inds
]]
if
len
(
pos_inds
)
>
0
:
pos_bbox_targets
=
self
.
rbox2delta
(
pos_sampled_anchors
,
pos_sampled_gt_boxes
)
bbox_targets
[
pos_inds
,
:]
=
pos_bbox_targets
bbox_gt_bboxes
[
pos_inds
,
:]
=
pos_sampled_gt_boxes
bbox_weights
[
pos_inds
,
:]
=
1.0
pos_labels
[
pos_inds
]
=
labels
[
pos_inds
]
...
...
@@ -469,4 +470,4 @@ class RBoxAssigner(object):
if
len
(
neg_inds
)
>
0
:
pos_labels_weights
[
neg_inds
]
=
1.0
return
(
pos_labels
,
pos_labels_weights
,
bbox_targets
,
bbox_weights
,
pos_inds
,
neg_inds
)
bbox_gt_bboxes
,
pos_inds
,
neg_inds
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录