未验证 提交 99c63aed 编写于 作者: C cnn 提交者: GitHub

s2anet update (#3817)

上级 7f000edb
......@@ -129,9 +129,10 @@ python3.7 tools/infer.py -c configs/dota/s2anet_1x_dota.yml -o weights=./weights
### S2ANet模型
| 模型 | GPU个数 | Conv类型 | mAP | 模型下载 | 配置文件 |
|:-----------:|:-------:|:----------:|:--------:| :----------:| :---------: |
| S2ANet | 8 | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2/configs/dota/s2anet_conv_1x_dota.yml) |
| 模型 | Conv类型 | mAP | 模型下载 | 配置文件 |
|:-----------:|:----------:|:--------:| :----------:| :---------: |
| S2ANet | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_conv_1x_dota.yml) |
| S2ANet | AlignConv | 74.0 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_alignconv_2x_dota.yml) |
**注意:**这里使用`multiclass_nms`,与原作者使用nms略有不同,精度相比原始论文中高0.15 (71.27-->71.42)。
......
......@@ -53,4 +53,3 @@ S2ANetBBoxPostProcess:
score_threshold: 0.05
nms_threshold: 0.1
normalized: False
#background_label: -1
epoch: 24
LearningRate:
base_lr: 0.005
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [14, 20]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
clip_grad_by_norm: 35
......@@ -26,3 +26,5 @@ S2ANetHead:
use_sigmoid_cls: True
reg_loss_weight: [1.0, 1.0, 1.0, 1.0, 1.05]
cls_loss_weight: [1.05, 1.0]
reg_loss_type: gwd
use_paddle_anchor: False
it _BASE_: [
_BASE_: [
'../datasets/dota.yml',
'../runtime.yml',
'_base_/s2anet_optimizer_1x.yml',
'_base_/s2anet_optimizer_2x.yml',
'_base_/s2anet.yml',
'_base_/s2anet_reader.yml',
]
weights: output/s2anet_1x_dota/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights: output/s2anet_alignconv_2x_dota/model_final
S2ANetHead:
anchor_strides: [8, 16, 32, 64, 128]
......@@ -19,5 +21,6 @@ S2ANetHead:
align_conv_type: 'AlignConv' # AlignConv Conv
align_conv_size: 3
use_sigmoid_cls: True
reg_loss_weight: [1.0, 1.0, 1.0, 1.0, 1.1]
cls_loss_weight: [1.1, 1.05]
reg_loss_weight: [1.0, 1.0, 1.0, 1.0, 1.05]
cls_loss_weight: [1.05, 1.0]
#reg_loss_type: 'l1' # 'l1' 'gwd'
......@@ -7,6 +7,13 @@ _BASE_: [
]
weights: output/s2anet_1x_dota/model_final
ResNet:
depth: 50
variant: b
norm_type: bn
return_idx: [1,2,3]
num_stages: 4
S2ANetHead:
anchor_strides: [8, 16, 32, 64, 128]
anchor_scales: [4]
......
......@@ -102,8 +102,7 @@ class S2ANetAnchorGenerator(nn.Layer):
valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
valid = valid_xx & valid_yy
valid = paddle.reshape(valid, [-1, 1])
valid = paddle.expand(valid,
[-1, self.num_base_anchors]).reshape([-1])
valid = paddle.expand(valid, [-1, self.num_base_anchors]).reshape([-1])
return valid
......@@ -179,9 +178,12 @@ class AlignConv(nn.Layer):
offset_x = x_anchor - x_conv
offset_y = y_anchor - y_conv
offset = paddle.stack([offset_y, offset_x], axis=-1)
offset = paddle.reshape(offset, [feat_h * feat_w, self.kernel_size * self.kernel_size * 2])
offset = paddle.reshape(
offset, [feat_h * feat_w, self.kernel_size * self.kernel_size * 2])
offset = paddle.transpose(offset, [1, 0])
offset = paddle.reshape(offset, [1, self.kernel_size * self.kernel_size * 2, feat_h, feat_w])
offset = paddle.reshape(
offset,
[1, self.kernel_size * self.kernel_size * 2, feat_h, feat_w])
return offset
def forward(self, x, refine_anchors, featmap_size, stride):
......@@ -440,8 +442,7 @@ class S2ANetHead(nn.Layer):
init_anchors = paddle.to_tensor(init_anchors, dtype='float32')
NA = featmap_size[0] * featmap_size[1]
init_anchors = paddle.reshape(
init_anchors, [NA, 4])
init_anchors = paddle.reshape(init_anchors, [NA, 4])
init_anchors = self.rect2rbox(init_anchors)
self.base_anchors_list.append(init_anchors)
......@@ -474,18 +475,19 @@ class S2ANetHead(nn.Layer):
# [N, CLS, H, W] --> [N, H, W, CLS]
odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
odm_cls_score_shape = odm_cls_score.shape
odm_cls_score_reshape = paddle.reshape(
odm_cls_score,
[odm_cls_score_shape[0], odm_cls_score_shape[1] * odm_cls_score_shape[2], self.cls_out_channels])
odm_cls_score_reshape = paddle.reshape(odm_cls_score, [
odm_cls_score_shape[0], odm_cls_score_shape[1] *
odm_cls_score_shape[2], self.cls_out_channels
])
odm_cls_branch_list.append(odm_cls_score_reshape)
odm_bbox_pred = self.odm_reg(odm_reg_feat)
# [N, 5, H, W] --> [N, H, W, 5]
odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
odm_bbox_pred_reshape = paddle.reshape(
odm_bbox_pred, [-1, 5])
odm_bbox_pred_reshape = paddle.unsqueeze(odm_bbox_pred_reshape, axis=0)
odm_bbox_pred_reshape = paddle.reshape(odm_bbox_pred, [-1, 5])
odm_bbox_pred_reshape = paddle.unsqueeze(
odm_bbox_pred_reshape, axis=0)
odm_reg_branch_list.append(odm_bbox_pred_reshape)
self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
......@@ -499,12 +501,8 @@ class S2ANetHead(nn.Layer):
odm_cls_branch_list = self.s2anet_head_out[2]
odm_reg_branch_list = self.s2anet_head_out[3]
pred_scores, pred_bboxes = self.get_bboxes(
odm_cls_branch_list,
odm_reg_branch_list,
refine_anchors,
nms_pre,
self.cls_out_channels,
self.use_sigmoid_cls)
odm_cls_branch_list, odm_reg_branch_list, refine_anchors, nms_pre,
self.cls_out_channels, self.use_sigmoid_cls)
return pred_scores, pred_bboxes
def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
......@@ -523,8 +521,8 @@ class S2ANetHead(nn.Layer):
return loss
def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='gwd'):
(labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds) = fam_target
(labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
pos_inds, neg_inds) = fam_target
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
fam_cls_losses = []
......@@ -543,7 +541,6 @@ class S2ANetHead(nn.Layer):
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
st_idx += feat_anchor_num
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
......@@ -590,18 +587,53 @@ class S2ANetHead(nn.Layer):
fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
# iou_factor
if reg_loss_type == 'l1':
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
fam_bbox = paddle.multiply(fam_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
if reg_loss_type == 'l1':
fam_bbox = fam_bbox * feat_bbox_weights
fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
fam_bbox = paddle.sum(fam_bbox, axis=-1)
feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
try:
from rbox_iou_ops import rbox_iou
except Exception as e:
print("import custom_ops error, try install rbox_iou_ops " \
"following ppdet/ext_op/README.md", e)
sys.stdout.flush()
sys.exit(-1)
# calc iou
fam_bbox_decode = self.delta2rbox(self.base_anchors_list[idx],
fam_bbox_pred)
bbox_gt_bboxes = paddle.to_tensor(
bbox_gt_bboxes,
dtype=fam_bbox_decode.dtype,
place=fam_bbox_decode.place)
bbox_gt_bboxes.stop_gradient = True
iou = rbox_iou(fam_bbox_decode, bbox_gt_bboxes)
iou = paddle.diag(iou)
if reg_loss_type == 'iou':
EPS = paddle.to_tensor(
1e-8, dtype='float32', stop_gradient=True)
iou_factor = -1.0 * paddle.log(iou + EPS) / (fam_bbox + EPS)
iou_factor.stop_gradient = True
#fam_bbox = fam_bbox * iou_factor
elif reg_loss_type == 'gwd':
bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
feat_anchor_num, :]
fam_bbox_total = self.gwd_loss(fam_bbox_decode,
bbox_gt_bboxes_level)
fam_bbox_total = fam_bbox_total * feat_bbox_weights
fam_bbox_total = paddle.sum(fam_bbox_total)
fam_bbox_losses.append(fam_bbox_total)
st_idx += feat_anchor_num
fam_cls_loss = paddle.add_n(fam_cls_losses)
fam_cls_loss_weight = paddle.to_tensor(
......@@ -611,8 +643,8 @@ class S2ANetHead(nn.Layer):
return fam_cls_loss, fam_reg_loss
def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='gwd'):
(labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds) = odm_target
(labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
pos_inds, neg_inds) = odm_target
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
odm_cls_losses = []
......@@ -631,7 +663,6 @@ class S2ANetHead(nn.Layer):
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
st_idx += feat_anchor_num
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
......@@ -677,18 +708,52 @@ class S2ANetHead(nn.Layer):
odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
# iou_factor odm not use_iou
if reg_loss_type == 'l1':
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
odm_bbox = paddle.multiply(odm_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
if reg_loss_type == 'l1':
odm_bbox = odm_bbox * feat_bbox_weights
odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
odm_bbox = paddle.sum(odm_bbox, axis=-1)
feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
try:
from rbox_iou_ops import rbox_iou
except Exception as e:
print("import custom_ops error, try install rbox_iou_ops " \
"following ppdet/ext_op/README.md", e)
sys.stdout.flush()
sys.exit(-1)
# calc iou
odm_bbox_decode = self.delta2rbox(self.refine_anchor_list[idx],
odm_bbox_pred)
bbox_gt_bboxes = paddle.to_tensor(
bbox_gt_bboxes,
dtype=odm_bbox_decode.dtype,
place=odm_bbox_decode.place)
bbox_gt_bboxes.stop_gradient = True
iou = rbox_iou(odm_bbox_decode, bbox_gt_bboxes)
iou = paddle.diag(iou)
if reg_loss_type == 'iou':
EPS = paddle.to_tensor(
1e-8, dtype='float32', stop_gradient=True)
iou_factor = -1.0 * paddle.log(iou + EPS) / (odm_bbox + EPS)
iou_factor.stop_gradient = True
# odm_bbox = odm_bbox * iou_factor
elif reg_loss_type == 'gwd':
bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
feat_anchor_num, :]
odm_bbox_total = self.gwd_loss(odm_bbox_decode,
bbox_gt_bboxes_level)
odm_bbox_total = odm_bbox_total * feat_bbox_weights
odm_bbox_total = paddle.sum(odm_bbox_total)
odm_bbox_losses.append(odm_bbox_total)
st_idx += feat_anchor_num
odm_cls_loss = paddle.add_n(odm_cls_losses)
odm_cls_loss_weight = paddle.to_tensor(
......@@ -737,11 +802,12 @@ class S2ANetHead(nn.Layer):
fam_reg_loss_lst.append(im_fam_reg_loss)
# ODM
np_refine_anchors_list = paddle.concat(self.refine_anchor_list).numpy()
np_refine_anchors_list = paddle.concat(
self.refine_anchor_list).numpy()
np_refine_anchors_list = np.concatenate(np_refine_anchors_list)
np_refine_anchors_list = np_refine_anchors_list.reshape(-1, 5)
im_odm_target = self.anchor_assign(np_refine_anchors_list, gt_bboxes,
gt_labels, is_crowd)
im_odm_target = self.anchor_assign(np_refine_anchors_list,
gt_bboxes, gt_labels, is_crowd)
if im_odm_target is not None:
im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
......@@ -841,7 +907,8 @@ class S2ANetHead(nn.Layer):
deltas = paddle.reshape(deltas, [-1, 5])
rrois = paddle.reshape(rrois, [-1, 5])
# fix dy2st bug denorm_deltas = deltas * self.stds + self.means
denorm_deltas = paddle.add(paddle.multiply(deltas, self.stds), self.means)
denorm_deltas = paddle.add(
paddle.multiply(deltas, self.stds), self.means)
dx = denorm_deltas[:, 0]
dy = denorm_deltas[:, 1]
......@@ -872,9 +939,7 @@ class S2ANetHead(nn.Layer):
bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
return bboxes
def bbox_decode(self,
bbox_preds,
anchors):
def bbox_decode(self, bbox_preds, anchors):
"""decode bbox from deltas
Args:
bbox_preds: [N,H,W,5]
......@@ -886,3 +951,109 @@ class S2ANetHead(nn.Layer):
bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
bboxes = self.delta2rbox(anchors, bbox_delta)
return bboxes
def trace(self, A):
tr = paddle.diagonal(A, axis1=-2, axis2=-1)
tr = paddle.sum(tr, axis=-1)
return tr
def sqrt_newton_schulz_autograd(self, A, numIters):
A_shape = A.shape
batchSize = A_shape[0]
dim = A_shape[1]
normA = A * A
normA = paddle.sum(normA, axis=1)
normA = paddle.sum(normA, axis=1)
normA = paddle.sqrt(normA)
normA1 = normA.reshape([batchSize, 1, 1])
Y = paddle.divide(A, paddle.expand_as(normA1, A))
I = paddle.eye(dim, dim).reshape([1, dim, dim])
l0 = []
for i in range(batchSize):
l0.append(I)
I = paddle.concat(l0, axis=0)
I.stop_gradient = False
Z = paddle.eye(dim, dim).reshape([1, dim, dim])
l1 = []
for i in range(batchSize):
l1.append(Z)
Z = paddle.concat(l1, axis=0)
Z.stop_gradient = False
for i in range(numIters):
T = 0.5 * (3.0 * I - Z.bmm(Y))
Y = Y.bmm(T)
Z = T.bmm(Z)
sA = Y * paddle.sqrt(normA1).reshape([batchSize, 1, 1])
sA = paddle.expand_as(sA, A)
return sA
def wasserstein_distance_sigma(sigma1, sigma2):
wasserstein_distance_item2 = paddle.matmul(
sigma1, sigma1) + paddle.matmul(
sigma2, sigma2) - 2 * self.sqrt_newton_schulz_autograd(
paddle.matmul(
paddle.matmul(sigma1, paddle.matmul(sigma2, sigma2)),
sigma1), 10)
wasserstein_distance_item2 = self.trace(wasserstein_distance_item2)
return wasserstein_distance_item2
def xywhr2xyrs(self, xywhr):
xywhr = paddle.reshape(xywhr, [-1, 5])
xy = xywhr[:, :2]
wh = paddle.clip(xywhr[:, 2:4], min=1e-7, max=1e7)
r = xywhr[:, 4]
cos_r = paddle.cos(r)
sin_r = paddle.sin(r)
R = paddle.stack(
(cos_r, -sin_r, sin_r, cos_r), axis=-1).reshape([-1, 2, 2])
S = 0.5 * paddle.nn.functional.diag_embed(wh)
return xy, R, S
def gwd_loss(self,
pred,
target,
fun='log',
tau=1.0,
alpha=1.0,
normalize=False):
xy_p, R_p, S_p = self.xywhr2xyrs(pred)
xy_t, R_t, S_t = self.xywhr2xyrs(target)
xy_distance = (xy_p - xy_t).square().sum(axis=-1)
Sigma_p = R_p.matmul(S_p.square()).matmul(R_p.transpose([0, 2, 1]))
Sigma_t = R_t.matmul(S_t.square()).matmul(R_t.transpose([0, 2, 1]))
whr_distance = paddle.diagonal(
S_p, axis1=-2, axis2=-1).square().sum(axis=-1)
whr_distance = whr_distance + paddle.diagonal(
S_t, axis1=-2, axis2=-1).square().sum(axis=-1)
_t = Sigma_p.matmul(Sigma_t)
_t_tr = paddle.diagonal(_t, axis1=-2, axis2=-1).sum(axis=-1)
_t_det_sqrt = paddle.diagonal(S_p, axis1=-2, axis2=-1).prod(axis=-1)
_t_det_sqrt = _t_det_sqrt * paddle.diagonal(
S_t, axis1=-2, axis2=-1).prod(axis=-1)
whr_distance = whr_distance + (-2) * (
(_t_tr + 2 * _t_det_sqrt).clip(0).sqrt())
distance = (xy_distance + alpha * alpha * whr_distance).clip(0)
if normalize:
wh_p = pred[..., 2:4].clip(min=1e-7, max=1e7)
wh_t = target[..., 2:4].clip(min=1e-7, max=1e7)
scale = ((wh_p.log() + wh_t.log()).sum(dim=-1) / 4).exp()
distance = distance / scale
if fun == 'log':
distance = paddle.log1p(distance)
if tau >= 1.0:
return 1 - 1 / (tau + distance)
return distance
......@@ -451,16 +451,17 @@ class RBoxAssigner(object):
anchors_num = anchors.shape[0]
bbox_targets = np.zeros_like(anchors)
bbox_weights = np.zeros_like(anchors)
bbox_gt_bboxes = np.zeros_like(anchors)
pos_labels = np.ones(anchors_num, dtype=np.int32) * -1
pos_labels_weights = np.zeros(anchors_num, dtype=np.float32)
pos_sampled_anchors = anchors[pos_inds]
#print('ancho target pos_inds', pos_inds, len(pos_inds))
pos_sampled_gt_boxes = gt_bboxes[anchor_gt_bbox_inds[pos_inds]]
if len(pos_inds) > 0:
pos_bbox_targets = self.rbox2delta(pos_sampled_anchors,
pos_sampled_gt_boxes)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_gt_bboxes[pos_inds, :] = pos_sampled_gt_boxes
bbox_weights[pos_inds, :] = 1.0
pos_labels[pos_inds] = labels[pos_inds]
......@@ -469,4 +470,4 @@ class RBoxAssigner(object):
if len(neg_inds) > 0:
pos_labels_weights[neg_inds] = 1.0
return (pos_labels, pos_labels_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds)
bbox_gt_bboxes, pos_inds, neg_inds)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册