Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
946094e3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
946094e3
编写于
9月 18, 2020
作者:
W
wubinghong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add drop-connected in efficientnet & refine the bifpn
上级
8064bab9
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
85 addition
and
110 deletion
+85
-110
configs/efficientdet_d0.yml
configs/efficientdet_d0.yml
+1
-1
ppdet/modeling/backbones/bifpn.py
ppdet/modeling/backbones/bifpn.py
+56
-71
ppdet/modeling/backbones/efficientnet.py
ppdet/modeling/backbones/efficientnet.py
+28
-38
未找到文件。
configs/efficientdet_d0.yml
浏览文件 @
946094e3
...
...
@@ -39,7 +39,7 @@ EfficientHead:
output_decoder
:
score_thresh
:
0.0
nms_thresh
:
0.5
pre_nms_top_n
:
5000
pre_nms_top_n
:
1000
# originally
5000
detections_per_im
:
100
nms_eta
:
1.0
...
...
ppdet/modeling/backbones/bifpn.py
浏览文件 @
946094e3
...
...
@@ -41,8 +41,7 @@ class FusionConv(object):
groups
=
self
.
num_chan
,
param_attr
=
ParamAttr
(
initializer
=
Xavier
(),
name
=
name
+
'_dw_w'
),
bias_attr
=
False
,
use_cudnn
=
False
)
bias_attr
=
False
)
# pointwise
x
=
fluid
.
layers
.
conv2d
(
x
,
...
...
@@ -68,53 +67,18 @@ class FusionConv(object):
class
BiFPNCell
(
object
):
def
__init__
(
self
,
num_chan
,
levels
=
5
,
inputs_layer_num
=
3
):
"""
# Node id starts from the input features and monotonically increase whenever
# [Node NO.] Here is an example for level P3 - P7:
# {3: [0, 8],
# 4: [1, 7, 9],
# 5: [2, 6, 10],
# 6: [3, 5, 11],
# 7: [4, 12]}
# [Related Edge]
# {'feat_level': 6, 'inputs_offsets': [3, 4]}, # for P6'
# {'feat_level': 5, 'inputs_offsets': [2, 5]}, # for P5'
# {'feat_level': 4, 'inputs_offsets': [1, 6]}, # for P4'
# {'feat_level': 3, 'inputs_offsets': [0, 7]}, # for P3"
# {'feat_level': 4, 'inputs_offsets': [1, 7, 8]}, # for P4"
# {'feat_level': 5, 'inputs_offsets': [2, 6, 9]}, # for P5"
# {'feat_level': 6, 'inputs_offsets': [3, 5, 10]}, # for P6"
# {'feat_level': 7, 'inputs_offsets': [4, 11]}, # for P7"
P7 (4) --------------> P7" (12)
|----------| ↑
↓ |
P6 (3) --> P6' (5) --> P6" (11)
|----------|----------↑↑
↓ |
P5 (2) --> P5' (6) --> P5" (10)
|----------|----------↑↑
↓ |
P4 (1) --> P4' (7) --> P4" (9)
|----------|----------↑↑
|----------↓|
P3 (0) --------------> P3" (8)
"""
super
(
BiFPNCell
,
self
).
__init__
()
self
.
levels
=
levels
self
.
num_chan
=
num_chan
num_trigates
=
levels
-
2
num_bigates
=
levels
self
.
inputs_layer_num
=
inputs_layer_num
# Learnable weights of [P4", P5", P6"]
self
.
trigates
=
fluid
.
layers
.
create_parameter
(
shape
=
[
levels
-
2
,
3
],
shape
=
[
num_trigates
,
3
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
# Learnable weights of [P6', P5', P4', P3", P7"]
self
.
bigates
=
fluid
.
layers
.
create_parameter
(
shape
=
[
level
s
,
2
],
shape
=
[
num_bigate
s
,
2
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
self
.
eps
=
1e-4
...
...
@@ -123,31 +87,38 @@ class BiFPNCell(object):
assert
len
(
inputs
)
==
self
.
levels
assert
((
is_first_time
)
and
(
len
(
p4_2_p5_2
)
!=
0
))
or
((
not
is_first_time
)
and
(
len
(
p4_2_p5_2
)
==
0
))
# upsample operator
def
upsample
(
feat
):
return
fluid
.
layers
.
resize_nearest
(
feat
,
scale
=
2.
)
# downsample operator
def
downsample
(
feat
):
return
fluid
.
layers
.
pool2d
(
feat
,
pool_type
=
'max'
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
'SAME'
)
return
fluid
.
layers
.
pool2d
(
feat
,
pool_type
=
'max'
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
'SAME'
)
# 3x3 fuse conv after OP combine
fuse_conv
=
FusionConv
(
self
.
num_chan
)
#
N
ormalize weight
#
n
ormalize weight
trigates
=
fluid
.
layers
.
relu
(
self
.
trigates
)
bigates
=
fluid
.
layers
.
relu
(
self
.
bigates
)
trigates
/=
fluid
.
layers
.
reduce_sum
(
trigates
,
dim
=
1
,
keep_dim
=
True
)
+
self
.
eps
bigates
/=
fluid
.
layers
.
reduce_sum
(
bigates
,
dim
=
1
,
keep_dim
=
True
)
+
self
.
eps
trigates
/=
fluid
.
layers
.
reduce_sum
(
trigates
,
dim
=
1
,
keep_dim
=
True
)
+
self
.
eps
bigates
/=
fluid
.
layers
.
reduce_sum
(
bigates
,
dim
=
1
,
keep_dim
=
True
)
+
self
.
eps
feature_maps
=
list
(
inputs
)
# make a copy, 依次是 [P3, P4, P5, P6, P7]
# top down path
feature_maps
=
list
(
inputs
)
# make a copy # top down path
for
l
in
range
(
self
.
levels
-
1
):
p
=
self
.
levels
-
l
-
2
w1
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
l
,
0
],
ends
=
[
l
+
1
,
1
])
w2
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
l
,
1
],
ends
=
[
l
+
1
,
2
])
above_layer
=
upsample
(
feature_maps
[
p
+
1
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
above_layer
+
w2
*
inputs
[
p
],
name
=
'{}_tb_{}'
.
format
(
cell_name
,
l
))
w1
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
l
,
0
],
ends
=
[
l
+
1
,
1
])
w2
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
l
,
1
],
ends
=
[
l
+
1
,
2
])
above
=
upsample
(
feature_maps
[
p
+
1
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
above
+
w2
*
inputs
[
p
],
name
=
'{}_tb_{}'
.
format
(
cell_name
,
l
))
# bottom up path
for
l
in
range
(
1
,
self
.
levels
):
p
=
l
...
...
@@ -155,26 +126,40 @@ class BiFPNCell(object):
below
=
downsample
(
feature_maps
[
p
-
1
])
if
p
==
self
.
levels
-
1
:
# handle P7
w1
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
p
,
0
],
ends
=
[
p
+
1
,
1
])
w2
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
p
,
1
],
ends
=
[
p
+
1
,
2
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
below
+
w2
*
inputs
[
p
],
name
=
name
)
w1
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
p
,
0
],
ends
=
[
p
+
1
,
1
])
w2
=
fluid
.
layers
.
slice
(
bigates
,
axes
=
[
0
,
1
],
starts
=
[
p
,
1
],
ends
=
[
p
+
1
,
2
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
below
+
w2
*
inputs
[
p
],
name
=
name
)
else
:
if
is_first_time
:
if
p
<
self
.
inputs_layer_num
:
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w3
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
2
],
ends
=
[
p
,
3
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
p4_2_p5_2
[
p
-
1
],
name
=
name
)
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
p4_2_p5_2
[
p
-
1
],
name
=
name
)
else
:
# For P6"
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w3
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
2
],
ends
=
[
p
,
3
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
inputs
[
p
],
name
=
name
)
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w3
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
2
],
ends
=
[
p
,
3
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
inputs
[
p
],
name
=
name
)
else
:
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w3
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
2
],
ends
=
[
p
,
3
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
inputs
[
p
],
name
=
name
)
w1
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
0
],
ends
=
[
p
,
1
])
w2
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
1
],
ends
=
[
p
,
2
])
w3
=
fluid
.
layers
.
slice
(
trigates
,
axes
=
[
0
,
1
],
starts
=
[
p
-
1
,
2
],
ends
=
[
p
,
3
])
feature_maps
[
p
]
=
fuse_conv
(
w1
*
feature_maps
[
p
]
+
w2
*
below
+
w3
*
inputs
[
p
],
name
=
name
)
return
feature_maps
...
...
@@ -197,7 +182,7 @@ class BiFPN(object):
def
__call__
(
self
,
inputs
):
feats
=
[]
#
Squeeze the channel with 1x1 conv
#
NOTE add two extra levels
for
idx
in
range
(
len
(
inputs
)):
if
inputs
[
idx
].
shape
[
1
]
!=
self
.
num_chan
:
feat
=
fluid
.
layers
.
conv2d
(
...
...
@@ -212,7 +197,8 @@ class BiFPN(object):
feat
,
momentum
=
0.997
,
epsilon
=
1e-04
,
param_attr
=
ParamAttr
(
initializer
=
Constant
(
1.0
),
regularizer
=
L2Decay
(
0.
)),
param_attr
=
ParamAttr
(
initializer
=
Constant
(
1.0
),
regularizer
=
L2Decay
(
0.
)),
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.
)),
name
=
'resample_bn_{}'
.
format
(
idx
))
else
:
...
...
@@ -266,7 +252,6 @@ class BiFPN(object):
name
=
'resample2_bn_{}'
.
format
(
idx
))
p4_2_p5_2
.
append
(
feat
)
# BiFPN, repeated
biFPN
=
BiFPNCell
(
self
.
num_chan
,
self
.
levels
,
len
(
inputs
))
for
r
in
range
(
self
.
repeat
):
if
r
==
0
:
...
...
ppdet/modeling/backbones/efficientnet.py
浏览文件 @
946094e3
...
...
@@ -54,8 +54,8 @@ def _decode_block_string(block_string):
key
,
value
=
splits
[:
2
]
options
[
key
]
=
value
if
's'
not
in
options
or
len
(
options
[
's'
])
!=
2
:
raise
ValueError
(
'Strides options should be a pair of integers.'
)
assert
((
's'
in
options
and
len
(
options
[
's'
])
==
1
)
or
(
len
(
options
[
's'
])
==
2
and
options
[
's'
][
0
]
==
options
[
's'
][
1
])
)
return
BlockArgs
(
kernel_size
=
int
(
options
[
'k'
]),
...
...
@@ -118,23 +118,20 @@ def get_model_params(scale):
def
round_filters
(
filters
,
global_params
,
skip
=
False
):
"""Round number of filters based on depth multiplier."""
multiplier
=
global_params
.
width_coefficient
divisor
=
global_params
.
depth_divisor
min_depth
=
global_params
.
min_depth
if
skip
or
not
multiplier
:
return
filters
divisor
=
global_params
.
depth_divisor
filters
*=
multiplier
min_depth
=
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
min_depth
=
global_params
.
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_filters
<
0.9
*
filters
:
# prevent rounding by more than 10%
new_filters
+=
divisor
return
int
(
new_filters
)
def
round_repeats
(
repeats
,
global_params
,
skip
=
False
):
"""Round number of filters based on depth multiplier."""
multiplier
=
global_params
.
depth_coefficient
if
skip
or
not
multiplier
:
return
repeats
...
...
@@ -148,8 +145,7 @@ def conv2d(inputs,
padding
=
'SAME'
,
groups
=
1
,
use_bias
=
False
,
name
=
'conv2d'
,
use_cudnn
=
True
):
name
=
'conv2d'
):
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_weights'
)
bias_attr
=
False
if
use_bias
:
...
...
@@ -164,8 +160,7 @@ def conv2d(inputs,
stride
=
stride
,
padding
=
padding
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_cudnn
=
use_cudnn
)
bias_attr
=
bias_attr
)
return
feats
...
...
@@ -193,45 +188,42 @@ def _drop_connect(inputs, prob, mode):
output
=
inputs
/
keep_prob
*
binary_tensor
return
output
def
mb_conv_block
(
inputs
,
input_filters
,
output_filters
,
expand_ratio
,
kernel_size
,
stride
,
id_skip
,
drop_connect_rate
,
momentum
,
eps
,
block_arg
,
drop_connect_rate
,
mode
,
se_ratio
=
None
,
name
=
None
):
feats
=
inputs
num_filters
=
input_filters
*
expand_ratio
# Expansion
if
expand_ratio
!=
1
:
feats
=
conv2d
(
feats
,
num_filters
,
1
,
name
=
name
+
'_expand_conv'
)
feats
=
batch_norm
(
feats
,
momentum
,
eps
,
name
=
name
+
'_bn0'
)
feats
=
fluid
.
layers
.
swish
(
feats
)
# Depthwise Convolution
feats
=
conv2d
(
feats
,
num_filters
,
kernel_size
,
stride
,
groups
=
num_filters
,
name
=
name
+
'_depthwise_conv'
,
use_cudnn
=
False
)
name
=
name
+
'_depthwise_conv'
)
feats
=
batch_norm
(
feats
,
momentum
,
eps
,
name
=
name
+
'_bn1'
)
feats
=
fluid
.
layers
.
swish
(
feats
)
# Squeeze and Excitation
if
se_ratio
is
not
None
:
filter_squeezed
=
max
(
1
,
int
(
input_filters
*
se_ratio
))
squeezed
=
fluid
.
layers
.
pool2d
(
feats
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
True
)
feats
,
pool_type
=
'avg'
,
global_pooling
=
True
)
squeezed
=
conv2d
(
squeezed
,
filter_squeezed
,
...
...
@@ -243,12 +235,10 @@ def mb_conv_block(inputs,
squeezed
,
num_filters
,
1
,
use_bias
=
True
,
name
=
name
+
'_se_expand'
)
feats
=
feats
*
fluid
.
layers
.
sigmoid
(
squeezed
)
# Project_conv_norm
feats
=
conv2d
(
feats
,
output_filters
,
1
,
name
=
name
+
'_project_conv'
)
feats
=
batch_norm
(
feats
,
momentum
,
eps
,
name
=
name
+
'_bn2'
)
# Skip connection and drop connect
if
block_arg
.
id_skip
and
block_arg
.
stride
==
1
and
input_filters
==
output_filters
:
if
id_skip
and
stride
==
1
and
input_filters
==
output_filters
:
if
drop_connect_rate
:
feats
=
_drop_connect
(
feats
,
drop_connect_rate
,
mode
)
feats
=
fluid
.
layers
.
elementwise_add
(
feats
,
inputs
)
...
...
@@ -268,10 +258,7 @@ class EfficientNet(object):
"""
__shared__
=
[
'norm_type'
]
def
__init__
(
self
,
scale
=
'b0'
,
use_se
=
True
,
norm_type
=
'bn'
):
def
__init__
(
self
,
scale
=
'b0'
,
use_se
=
True
,
norm_type
=
'bn'
):
assert
scale
in
[
'b'
+
str
(
i
)
for
i
in
range
(
8
)],
\
"valid scales are b0 - b7"
assert
norm_type
in
[
'bn'
,
'sync_bn'
],
\
...
...
@@ -285,21 +272,23 @@ class EfficientNet(object):
def
__call__
(
self
,
inputs
,
mode
):
assert
mode
in
[
'train'
,
'test'
],
\
"only 'train' and 'test' mode are supported"
blocks_args
,
global_params
=
get_model_params
(
self
.
scale
)
momentum
=
global_params
.
batch_norm_momentum
eps
=
global_params
.
batch_norm_epsilon
# Stem part.
num_filters
=
round_filters
(
blocks_args
[
0
].
input_filters
,
global_params
,
global_params
.
fix_head_stem
)
feats
=
conv2d
(
inputs
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
2
,
name
=
'_conv_stem'
)
feats
=
conv2d
(
inputs
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
2
,
name
=
'_conv_stem'
)
feats
=
batch_norm
(
feats
,
momentum
=
momentum
,
eps
=
eps
,
name
=
'_bn0'
)
feats
=
fluid
.
layers
.
swish
(
feats
)
# Builds blocks.
feature_maps
=
[]
layer_count
=
0
num_blocks
=
sum
([
block_arg
.
num_repeat
for
block_arg
in
blocks_args
])
feature_maps
=
[]
for
block_arg
in
blocks_args
:
# Update block input and output filters based on depth multiplier.
...
...
@@ -323,10 +312,10 @@ class EfficientNet(object):
block_arg
.
expand_ratio
,
block_arg
.
kernel_size
,
block_arg
.
stride
,
block_arg
.
id_skip
,
drop_connect_rate
,
momentum
,
eps
,
block_arg
,
drop_connect_rate
,
mode
,
se_ratio
=
block_arg
.
se_ratio
,
name
=
'_blocks.{}.'
.
format
(
layer_count
))
...
...
@@ -347,15 +336,16 @@ class EfficientNet(object):
block_arg
.
expand_ratio
,
block_arg
.
kernel_size
,
block_arg
.
stride
,
block_arg
.
id_skip
,
drop_connect_rate
,
momentum
,
eps
,
block_arg
,
drop_connect_rate
,
mode
,
se_ratio
=
block_arg
.
se_ratio
,
name
=
'_blocks.{}.'
.
format
(
layer_count
))
layer_count
+=
1
feature_maps
.
append
(
feats
)
return
list
(
feature_maps
[
i
]
for
i
in
[
2
,
4
,
6
])
# 1/8, 1/16, 1/32
return
list
(
feature_maps
[
i
]
for
i
in
[
2
,
4
,
6
])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录