You need to sign in or sign up before continuing.
未验证 提交 8ad63b1a 编写于 作者: Z zhiboniu 提交者: GitHub

add yaml guide file; (#4771)

test=document_fix
上级 69915462
...@@ -52,6 +52,8 @@ MPII数据集 ...@@ -52,6 +52,8 @@ MPII数据集
​ 目前KeyPoint模型支持[COCO](https://cocodataset.org/#keypoints-2017)数据集和[MPII](http://human-pose.mpi-inf.mpg.de/#overview)数据集,数据集的准备方式请参考[关键点数据准备](../../docs/tutorials/PrepareKeypointDataSet_cn.md) ​ 目前KeyPoint模型支持[COCO](https://cocodataset.org/#keypoints-2017)数据集和[MPII](http://human-pose.mpi-inf.mpg.de/#overview)数据集,数据集的准备方式请参考[关键点数据准备](../../docs/tutorials/PrepareKeypointDataSet_cn.md)
​ 关于config配置文件内容说明请参考[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)
- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。 - 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
......
**# config yaml配置项说明**
KeyPoint 使用时config文件配置项说明,以[tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)为例
```yaml
use_gpu: true #是否使用gpu训练
log_iter: 5 #打印log的iter间隔
save_dir: output #模型保存目录
snapshot_epoch: 10 #保存模型epoch间隔
weights: output/tinypose_256x192/model_final #测试加载模型路径(不含后缀“.pdparams”)
epoch: 420 #总训练epoch数量
num_joints: &num_joints 17 #关键点数量
pixel_std: &pixel_std 200 #变换时相对比率像素(无需关注,不动就行)
metric: KeyPointTopDownCOCOEval #metric评估函数
num_classes: 1 #种类数(检测模型用,不需关注)
train_height: &train_height 256 #模型输入尺度高度变量设置
train_width: &train_width 192 #模型输入尺度宽度变量设置
trainsize: &trainsize [*train_width, *train_height] #模型输入尺寸,使用已定义变量
hmsize: &hmsize [48, 64] #输出热力图尺寸(宽,高)
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #左右关键点经图像翻转时对应关系,例如:图像翻转后,左手腕变成了右手腕,右手腕变成了左手腕
\#####model
architecture: TopDownHRNet #模型框架结构类选择
TopDownHRNet: #TopDownHRNet相关配置
backbone: LiteHRNet #模型主干网络
post_process: HRNetPostProcess #模型后处理类
flip_perm: *flip_perm #同上flip_perm
num_joints: *num_joints #关键点数量(输出通道数量)
width: &width 40 #backbone输出通道数
loss: KeyPointMSELoss #loss函数选择
use_dark: true #是否使用DarkPose后处理
LiteHRNet: #LiteHRNet相关配置
network_type: wider_naive #网络结构类型选择
freeze_at: -1 #梯度截断branch id,截断则该branch梯度不会反传
freeze_norm: false #是否固定normalize层参数
return_idx: [0] #返回feature的branch id
KeyPointMSELoss: #Loss相关配置
use_target_weight: true #是否使用关键点权重
loss_scale: 1.0 #loss比率调整,1.0表示不变
\#####optimizer
LearningRate: #学习率相关配置
base_lr: 0.002 #初始基础学习率
schedulers:
\- !PiecewiseDecay #衰减策略
​ milestones: [380, 410] #衰减时间对应epoch次数
​ gamma: 0.1 #衰减率
\- !LinearWarmup #Warmup策略
​ start_factor: 0.001 #warmup初始学习率比率
​ steps: 500 #warmup所用iter次数
OptimizerBuilder: #学习策略设置
optimizer:
​ type: Adam #学习策略Adam
regularizer:
​ factor: 0.0 #正则项权重
​ type: L2 #正则类型L2/L1
\#####data
TrainDataset: #训练数据集设置
!KeypointTopDownCocoDataset #数据加载类
​ image_dir: "" #图片文件夹,对应dataset_dir/image_dir
​ anno_path: aic_coco_train_cocoformat.json #训练数据Json文件,coco格式
​ dataset_dir: dataset #训练数据集所在路径,image_dir、anno_path路径基于此目录
​ num_joints: *num_joints #关键点数量,使用已定义变量
​ trainsize: *trainsize #训练使用尺寸,使用已定义变量
​ pixel_std: *pixel_std #同上pixel_std
​ use_gt_bbox: True #是否使用gt框
EvalDataset: #评估数据集设置
!KeypointTopDownCocoDataset #数据加载类
​ image_dir: val2017 #图片文件夹
​ anno_path: annotations/person_keypoints_val2017.json #评估数据Json文件,coco格式
​ dataset_dir: dataset/coco #数据集路径,image_dir、anno_path路径基于此目录
​ num_joints: *num_joints #关键点数量,使用已定义变量
​ trainsize: *trainsize #训练使用尺寸,使用已定义变量
​ pixel_std: *pixel_std #同上pixel_std
​ use_gt_bbox: True #是否使用gt框,一般测试时用
​ image_thre: 0.5 #检测框阈值设置,测试时使用非gt_bbox时用
TestDataset: #纯测试数据集设置,无label
!ImageFolder #数据加载类,图片文件夹类型
​ anno_path: dataset/coco/keypoint_imagelist.txt #测试图片列表文件
worker_num: 2 #数据加载worker数量,一般2-4,太多可能堵塞
global_mean: &global_mean [0.485, 0.456, 0.406] #全局均值变量设置
global_std: &global_std [0.229, 0.224, 0.225] #全局方差变量设置
TrainReader: #训练数据加载类设置
sample_transforms: #数据预处理变换设置
​ \- RandomFlipHalfBodyTransform: #随机翻转&随机半身变换类
​ scale: 0.25 #最大缩放尺度比例
​ rot: 30 #最大旋转角度
​ num_joints_half_body: 8 #关键点小于此数不做半身变换
​ prob_half_body: 0.3 #半身变换执行概率(满足关键点数量前提下)
​ pixel_std: *pixel_std #同上pixel_std
​ trainsize: *trainsize #训练尺度,同上trainsize
​ upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #上半身关键点id
​ flip_pairs: *flip_perm #左右关键点对应关系,同上flip_perm
​ \- AugmentationbyInformantionDropping:
​ prob_cutout: 0.5 #随机擦除变换概率
​ offset_factor: 0.05 #擦除位置中心点随机波动范围相对图片宽度比例
​ num_patch: 1 #擦除位置数量
​ trainsize: *trainsize #同上trainsize
​ \- TopDownAffine:
​ trainsize: *trainsize #同上trainsize
​ use_udp: true #是否使用udp_unbias(flip测试使用)
​ \- ToHeatmapsTopDown_DARK: #生成热力图gt类
​ hmsize: *hmsize #热力图尺寸
​ sigma: 2 #生成高斯核sigma值设置
batch_transforms:
​ \- NormalizeImage: #图像归一化类
​ mean: *global_mean #均值设置,使用已有变量
​ std: *global_std #方差设置,使用已有变量
​ is_scale: true #图像元素是否除255.,即[0,255]到[0,1]
​ \- Permute: {} #通道变换HWC->CHW,一般都需要
batch_size: 128 #训练时batchsize
shuffle: true #数据集是否shuffle
drop_last: false #数据集对batchsize取余数量是否丢弃
EvalReader:
sample_transforms: #数据预处理变换设置,意义同TrainReader
​ \- TopDownAffine: #Affine变换设置
​ trainsize: *trainsize #训练尺寸同上trainsize,使用已有变量
​ use_udp: true #是否使用udp_unbias,与训练需对应
batch_transforms:
​ \- NormalizeImage: #图片归一化,与训练需对应
​ mean: *global_mean
​ std: *global_std
​ is_scale: true
​ \- Permute: {} #通道变换HWC->CHW
batch_size: 16 #测试时batchsize
TestReader:
inputs_def:
​ image_shape: [3, *train_height, *train_width] #输入数据维度设置,CHW
sample_transforms:
​ \- Decode: {} #图片加载
​ \- TopDownEvalAffine: #Affine类,Eval时用
​ trainsize: *trainsize #输入图片尺度
​ \- NormalizeImage: #输入图像归一化
​ mean: *global_mean #均值
​ std: *global_std #方差
​ is_scale: true #图像元素是否除255.,即[0,255]到[0,1]
​ \- Permute: {} #通道变换HWC->CHW
batch_size: 1 #Test batchsize
fuse_normalize: false #导出模型时是否内融合归一化操作(若是,预处理中可省略normalize,可以加快pipeline速度)
```
**# config yaml guide**
KeyPoint config guide,Take an example of [tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)
```yaml
use_gpu: true #train with gpu or not
log_iter: 5 #print log every 5 iter
save_dir: output #the directory to save model
snapshot_epoch: 10 #save model every 10 epochs
weights: output/tinypose_256x192/model_final #the weight to load(without postfix “.pdparams”)
epoch: 420 #the total epoch number to train
num_joints: &num_joints 17 #number of joints
pixel_std: &pixel_std 200 #the standard pixel length(don't care)
metric: KeyPointTopDownCOCOEval #metric function
num_classes: 1 #number of classes(just for object detection, don't care)
train_height: &train_height 256 #the height of model input
train_width: &train_width 192 #the width of model input
trainsize: &trainsize [*train_width, *train_height] #the shape of model input
hmsize: &hmsize [48, 64] #the shape of model output
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #the correspondence between left and right keypoint id, for example: left wrist become right wrist after image flip, and also the right wrist becomes left wrist
\#####model
architecture: TopDownHRNet #the model architecture
TopDownHRNet: #TopDownHRNet configs
backbone: LiteHRNet #which backbone to use
post_process: HRNetPostProcess #the post_process to use
flip_perm: *flip_perm #same to the upper "flip_perm"
num_joints: *num_joints #the joint number(the number of output channels)
width: &width 40 #backbone output channels
loss: KeyPointMSELoss #loss funciton
use_dark: true #whther to use DarkPose in postprocess
LiteHRNet: #LiteHRNet configs
network_type: wider_naive #the network type of backbone
freeze_at: -1 #the branch match this id doesn't backward,-1 means all branch backward
freeze_norm: false #whether to freeze normalize weights
return_idx: [0] #the branch id to fetch features
KeyPointMSELoss: #Loss configs
use_target_weight: true #whether to use target weights
loss_scale: 1.0 #loss weights,finalloss = loss*loss_scale
\#####optimizer
LearningRate: #LearningRate configs
base_lr: 0.002 #the original base learning rate
schedulers:
\- !PiecewiseDecay #the scheduler to adjust learning rate
​ milestones: [380, 410] #the milestones(epochs) to adjust learning rate
​ gamma: 0.1 #the ratio to adjust learning rate, new_lr = lr*gamma
\- !LinearWarmup #Warmup configs
​ start_factor: 0.001 #the original ratio with respect to base_lr
​ steps: 500 #iters used to warmup
OptimizerBuilder: #Optimizer type configs
optimizer:
​ type: Adam #optimizer type: Adam
regularizer:
​ factor: 0.0 #the regularizer weight
​ type: L2 #regularizer type: L2/L1
\#####data
TrainDataset: #Train Dataset configs
!KeypointTopDownCocoDataset #the dataset class to load data
​ image_dir: "" #the image directory, relative to dataset_dir
​ anno_path: aic_coco_train_cocoformat.json #the train datalist,coco format, relative to dataset_dir
​ dataset_dir: dataset #the dataset directory, the image_dir and anno_path based on this directory
​ num_joints: *num_joints #joint numbers
​ trainsize: *trainsize #the input size of model
​ pixel_std: *pixel_std #same to the upper "pixel_std"
​ use_gt_bbox: True #whether to use gt bbox, commonly used in eval
EvalDataset: #Eval Dataset configs
!KeypointTopDownCocoDataset #the dataset class to load data
​ image_dir: val2017 #the image directory, relative to dataset_dir
​ anno_path: annotations/person_keypoints_val2017.json #the eval datalist,coco format, relative to dataset_dir
​ dataset_dir: dataset/coco #the dataset directory, the image_dir and anno_path based on this directory
​ num_joints: *num_joints #joint numbers
​ trainsize: *trainsize #the input size of model
​ pixel_std: *pixel_std #same to the upper "pixel_std"
​ use_gt_bbox: True #whether to use gt bbox, commonly used in eval
​ image_thre: 0.5 #the threshold of detected rect, used while use_gt_bbox is False
TestDataset: #the test dataset without label
!ImageFolder #the class to load data, find images by folder
​ anno_path: dataset/coco/keypoint_imagelist.txt #the image list file
worker_num: 2 #the workers to load Dataset
global_mean: &global_mean [0.485, 0.456, 0.406] #means used to nomalize image
global_std: &global_std [0.229, 0.224, 0.225] #stds used to nomalize image
TrainReader: #TrainReader configs
sample_transforms: #transform configs
​ \- RandomFlipHalfBodyTransform: #random flip & random HalfBodyTransform
​ scale: 0.25 #the maximum scale for size transform
​ rot: 30 #the maximum rotation to transoform
​ num_joints_half_body: 8 #the HalfBodyTransform is skiped while joints found is less than this number
​ prob_half_body: 0.3 #the ratio of halfbody transform
​ pixel_std: *pixel_std #same to upper "pixel_std"
​ trainsize: *trainsize #the input size of model
​ upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #the joint id which is belong to upper body
​ flip_pairs: *flip_perm #same to the upper "flip_perm"
​ \- AugmentationbyInformantionDropping:
​ prob_cutout: 0.5 #the probability to cutout keypoint
​ offset_factor: 0.05 #the jitter offset of cutout position, expressed as a percentage of trainwidth
​ num_patch: 1 #the numbers of area to cutout
​ trainsize: *trainsize #same to upper "trainsize"
​ \- TopDownAffine:
​ trainsize: *trainsize #same to upper "trainsize"
​ use_udp: true #whether to use udp_unbias(just for flip eval)
​ \- ToHeatmapsTopDown_DARK: #generate gt heatmaps
​ hmsize: *hmsize #the size of output heatmaps
​ sigma: 2 #the sigma of gaussin kernel which used to generate gt heatmaps
batch_transforms:
​ \- NormalizeImage: #image normalize class
​ mean: *global_mean #mean of normalize
​ std: *global_std #std of normalize
​ is_scale: true #whether scale by 1/255 to every image pixels,transform pixel from [0,255] to [0,1]
​ \- Permute: {} #channel transform from HWC to CHW
batch_size: 128 #batchsize used for train
shuffle: true #whether to shuffle the images before train
drop_last: false #whether drop the last images which is not enogh for batchsize
EvalReader:
sample_transforms: #transform configs
​ \- TopDownAffine: #Affine configs
​ trainsize: *trainsize #same to upper "trainsize"
​ use_udp: true #whether to use udp_unbias(just for flip eval)
batch_transforms:
​ \- NormalizeImage: #image normalize, the values should be same to values in TrainReader
​ mean: *global_mean
​ std: *global_std
​ is_scale: true
​ \- Permute: {} #channel transform from HWC to CHW
batch_size: 16 #batchsize used for test
TestReader:
inputs_def:
​ image_shape: [3, *train_height, *train_width] #the input dimensions used in model,CHW
sample_transforms:
​ \- Decode: {} #load image
​ \- TopDownEvalAffine: #Affine class used in Eval
​ trainsize: *trainsize #the input size of model
​ \- NormalizeImage: #image normalize, the values should be same to values in TrainReader
​ mean: *global_mean #mean of normalize
​ std: *global_std #std of normalize
​ is_scale: true #whether scale by 1/255 to every image pixels,transform pixel from [0,255] to [0,1]
​ \- Permute: {} #channel transform from HWC to CHW
batch_size: 1 #Test batchsize
fuse_normalize: false #whether fuse the normalize into model while export model, this speedup the model infer
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册