- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
KeyPoint config guide,Take an example of [tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)
```yaml
use_gpu:true#train with gpu or not
log_iter:5#print log every 5 iter
save_dir:output#the directory to save model
snapshot_epoch:10#save model every 10 epochs
weights:output/tinypose_256x192/model_final#the weight to load(without postfix “.pdparams”)
epoch:420#the total epoch number to train
num_joints:&num_joints17#number of joints
pixel_std:&pixel_std200#the standard pixel length(don't care)
metric:KeyPointTopDownCOCOEval#metric function
num_classes:1#number of classes(just for object detection, don't care)
train_height:&train_height256#the height of model input
train_width:&train_width192#the width of model input
trainsize:&trainsize[*train_width,*train_height]#the shape of model input
hmsize:&hmsize[48,64]#the shape of model output
flip_perm:&flip_perm[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]#the correspondence between left and right keypoint id, for example: left wrist become right wrist after image flip, and also the right wrist becomes left wrist
\#####model
architecture:TopDownHRNet#the model architecture
TopDownHRNet:#TopDownHRNet configs
backbone:LiteHRNet#which backbone to use
post_process:HRNetPostProcess#the post_process to use
flip_perm:*flip_perm#same to the upper "flip_perm"
num_joints:*num_joints#the joint number(the number of output channels)
width:&width40#backbone output channels
loss:KeyPointMSELoss#loss funciton
use_dark:true#whther to use DarkPose in postprocess
LiteHRNet:#LiteHRNet configs
network_type:wider_naive#the network type of backbone
freeze_at:-1#the branch match this id doesn't backward,-1 means all branch backward
freeze_norm:false#whether to freeze normalize weights
return_idx:[0]#the branch id to fetch features
KeyPointMSELoss:#Loss configs
use_target_weight:true#whether to use target weights