未验证 提交 87cb019d 编写于 作者: C cnn 提交者: GitHub

[Doc] update install doc (#2316)

* Update install doc and deploy doc.
上级 8635791f
...@@ -67,5 +67,5 @@ yolov3_darknet # 模型目录 ...@@ -67,5 +67,5 @@ yolov3_darknet # 模型目录
### 3.2 编译 ### 3.2 编译
仅支持在`Windows``Linux`平台编译和使用 仅支持在`Windows``Linux`平台编译和使用
- [Linux 编译指南](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp/docs/linux_build.md) - [Linux 编译指南](docs/linux_build.md)
- [Windows编译指南(使用Visual Studio 2019)](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp/docs/windows_vs2019_build.md) - [Windows编译指南(使用Visual Studio 2019)](docs/windows_vs2019_build.md)
...@@ -19,9 +19,9 @@ cat /etc/nv_tegra_release ...@@ -19,9 +19,9 @@ cat /etc/nv_tegra_release
* (3) 下载`JetPack`,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html) 中的`Preparing a Jetson Developer Kit for Use`章节内容进行刷写系统镜像。 * (3) 下载`JetPack`,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html) 中的`Preparing a Jetson Developer Kit for Use`章节内容进行刷写系统镜像。
## 下载或编译`Paddle`预测库 ## 下载或编译`Paddle`预测库
本文档使用`Paddle``JetPack4.3`上预先编译好的预测库,请根据硬件在[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 中选择对应版本的`Paddle`预测库。 本文档使用`Paddle``JetPack4.3`上预先编译好的预测库,请根据硬件在[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 中选择对应版本的`Paddle`预测库。
这里选择[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-rc0-nv-jetson-cuda10-cudnn7.6-trt6/paddle_inference.tgz), `Paddle`版本`2.0.0-rc0`,`CUDA`版本`10.0`,`CUDNN`版本`7.6``TensorRT`版本`6` 这里选择[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-nv-jetson-jetpack4.3-all/paddle_inference.tgz), `Paddle`版本`2.0.0-rc0`,`CUDA`版本`10.0`,`CUDNN`版本`7.6``TensorRT`版本`6`
若需要自己在`Jetson`平台上自定义编译`Paddle`库,请参考文档[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)`NVIDIA Jetson嵌入式硬件预测库源码编译`部分内容。 若需要自己在`Jetson`平台上自定义编译`Paddle`库,请参考文档[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)`NVIDIA Jetson嵌入式硬件预测库源码编译`部分内容。
...@@ -34,7 +34,7 @@ cat /etc/nv_tegra_release ...@@ -34,7 +34,7 @@ cat /etc/nv_tegra_release
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference ### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-rc0-nv-jetson-cuda10-cudnn7.6-trt6/paddle_inference.tgz) 解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-nv-jetson-jetpack4.3-all/paddle_inference.tgz)
下载并解压后`/root/projects/fluid_inference`目录包含内容为: 下载并解压后`/root/projects/fluid_inference`目录包含内容为:
``` ```
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference ### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#linux) PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#linux)
下载并解压后`/root/projects/fluid_inference`目录包含内容为: 下载并解压后`/root/projects/fluid_inference`目录包含内容为:
......
...@@ -111,4 +111,4 @@ cd /d D:\projects\PaddleDetection\inference\build\release ...@@ -111,4 +111,4 @@ cd /d D:\projects\PaddleDetection\inference\build\release
detection_demo.exe --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory detection_demo.exe --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory
``` ```
更详细说明请参考ReadMe文档: [预测和可视化部分](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/README.md) 更详细说明请参考ReadMe文档: [预测和可视化部分](../../deploy/README.md)
...@@ -9,7 +9,6 @@ English | [简体中文](INSTALL_cn.md) ...@@ -9,7 +9,6 @@ English | [简体中文](INSTALL_cn.md)
- [PaddlePaddle](#paddlepaddle) - [PaddlePaddle](#paddlepaddle)
- [Other Dependencies](#other-dependencies) - [Other Dependencies](#other-dependencies)
- [PaddleDetection](#paddle-detection) - [PaddleDetection](#paddle-detection)
- [Datasets](#datasets)
## Introduction ## Introduction
...@@ -17,16 +16,17 @@ English | [简体中文](INSTALL_cn.md) ...@@ -17,16 +16,17 @@ English | [简体中文](INSTALL_cn.md)
This document covers how to install PaddleDetection, its dependencies This document covers how to install PaddleDetection, its dependencies
(including PaddlePaddle), together with COCO and Pascal VOC dataset. (including PaddlePaddle), together with COCO and Pascal VOC dataset.
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/master/). For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/).
## Install PaddlePaddle ## Install PaddlePaddle
### Requirements: ### Requirements:
- Python2 or Python3 (Only support Python3 for windows) - OS 64 bit
- Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7),64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 9.0 - CUDA >= 9.0
- cuDNN >= 7.6 - cuDNN >= 7.6
- nccl >= 2.1.2
If you need GPU multi-card training, firstly please install NCCL. (Windows does not support nccl). If you need GPU multi-card training, firstly please install NCCL. (Windows does not support nccl).
...@@ -34,24 +34,38 @@ PaddleDetection depends on PaddlePaddle version relationship: ...@@ -34,24 +34,38 @@ PaddleDetection depends on PaddlePaddle version relationship:
| PaddleDetection version | PaddlePaddle version | tips | | PaddleDetection version | PaddlePaddle version | tips |
| :----------------: | :---------------: | :-------: | | :----------------: | :---------------: | :-------: |
| v0.3 | >=1.7 | -- | | release/0.3 | >=1.7 | -- |
| v0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 | | release/0.4 | >= 1.8.4 | PP-YOLO depends on 1.8.4 |
| v0.5 | >= 1.8.4 | Most models can run with >= 1.8.4, Cascade R-CNN and SOLOv2 depend on 2.0.0.rc | | release/0.5 | >= 1.8.4 | Cascade R-CNN and SOLOv2 depends on 2.0.0.rc |
| release/2.0-rc | >= 2.0.1 | -- |
If you want install paddlepaddle, please follow the instructions in [installation document](http://www.paddlepaddle.org.cn/). If you want install paddlepaddle, please follow the instructions in [installation document](http://www.paddlepaddle.org.cn/).
Please make sure your PaddlePaddle installation was successful and the version ```
of your PaddlePaddle is not lower than required. Verify with the following commands. # install paddlepaddle
# install paddlepaddle CUDA9.0
python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple
install paddlepaddle CUDA10.0
python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
install paddlepaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
``` ```
# To check PaddlePaddle installation in your Python interpreter
>>> import paddle.fluid as fluid
>>> fluid.install_check.run_check()
# To check PaddlePaddle version For more installation methods such as conda, docker installation, please refer to the instructions in the [installation document](https://www.paddlepaddle.org.cn/install/quick)
python -c "import paddle; print(paddle.__version__)"
Please make sure that your PaddlePaddle is installed successfully and the version is not lower than the required version. Use the following command to verify.
``` ```
# check
>>> import paddle
>>> paddle.utils.run_check()
# confirm the paddle's version
python -c "import paddle; print(paddle.__version__)"
```
## Other Dependencies ## Other Dependencies
...@@ -104,108 +118,24 @@ pip install -r requirements.txt ...@@ -104,108 +118,24 @@ pip install -r requirements.txt
python ppdet/modeling/tests/test_architectures.py python ppdet/modeling/tests/test_architectures.py
``` ```
## Datasets After the test is passed, the following information will be prompted:
PaddleDetection includes support for [COCO](http://cocodataset.org) and [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) by default, please follow these instructions to set up the dataset.
**Create symlinks for local datasets:**
Default dataset path in config files is `dataset/coco` and `dataset/voc`, if the
datasets are already available on disk, you can simply create symlinks to
their directories:
```
ln -sf <path/to/coco> <path/to/paddle_detection>/dataset/coco
ln -sf <path/to/voc> <path/to/paddle_detection>/dataset/voc
```
For Pascal VOC dataset, you should create file list by:
``` ```
python dataset/voc/create_list.py ..........
----------------------------------------------------------------------
Ran 12 tests in 2.480s
OK (skipped=2)
``` ```
**Download datasets manually:** **Infer by pretrained-model**
On the other hand, to download the datasets, run the following commands:
- COCO Use the pre-trained model to predict the image:
``` ```
python dataset/coco/download_coco.py # set use_gpu
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
``` ```
`COCO` dataset with directory structures like this: An image of the same name with the predicted result will be generated under the `output` folder.
The result is as shown below:
```
dataset/coco/
├── annotations
│ ├── instances_train2014.json
│ ├── instances_train2017.json
│ ├── instances_val2014.json
│ ├── instances_val2017.json
│ | ...
├── train2017
│ ├── 000000000009.jpg
│ ├── 000000580008.jpg
│ | ...
├── val2017
│ ├── 000000000139.jpg
│ ├── 000000000285.jpg
│ | ...
| ...
```
- Pascal VOC
```
python dataset/voc/download_voc.py
```
`Pascal VOC` dataset with directory structure like this: ![](../images/000000014439.jpg)
```
dataset/voc/
├── trainval.txt
├── test.txt
├── label_list.txt (optional)
├── VOCdevkit/VOC2007
│ ├── Annotations
│ ├── 001789.xml
│ | ...
│ ├── JPEGImages
│ ├── 001789.jpg
│ | ...
│ ├── ImageSets
│ | ...
├── VOCdevkit/VOC2012
│ ├── Annotations
│ ├── 2011_003876.xml
│ | ...
│ ├── JPEGImages
│ ├── 2011_003876.jpg
│ | ...
│ ├── ImageSets
│ | ...
| ...
```
**NOTE:** If you set `use_default_label=False` in yaml configs, the `label_list.txt`
of Pascal VOC dataset will be read, otherwise, `label_list.txt` is unnecessary and
the default Pascal VOC label list which defined in
[voc\_loader.py](https://github.com/PaddlePaddle/PaddleDetection/blob/master/ppdet/data/source/voc.py) will be used.
**Download datasets automatically:**
If a training session is started but the dataset is not setup properly (e.g,
not found in `dataset/coco` or `dataset/voc`), PaddleDetection can automatically
download them from [COCO-2017](http://images.cocodataset.org) and
[VOC2012](http://host.robots.ox.ac.uk/pascal/VOC), the decompressed datasets
will be cached in `~/.cache/paddle/dataset/` and can be discovered automatically
subsequently.
**NOTE:**
- If you want to use a custom datasets, please refer to [Custom DataSet Document](Custom_DataSet.md)
- For further informations on the datasets, please see [READER.md](../advanced_tutorials/READER.md)
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
这份文档介绍了如何安装PaddleDetection及其依赖项(包括PaddlePaddle)。 这份文档介绍了如何安装PaddleDetection及其依赖项(包括PaddlePaddle)。
PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/master/README.md). PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/README_cn.md).
## 安装PaddlePaddle ## 安装PaddlePaddle
...@@ -22,7 +22,7 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP ...@@ -22,7 +22,7 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP
- OS 64位操作系统 - OS 64位操作系统
- Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7),64位版本 - Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7),64位版本
- pip/pip3(9.0.1+),64位版本操作系统 - pip/pip3(9.0.1+),64位版本操作系统
- CUDA >= 9.0 - CUDA >= 9.0
- cuDNN >= 7.6 - cuDNN >= 7.6
...@@ -30,35 +30,34 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP ...@@ -30,35 +30,34 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP
PaddleDetection 依赖 PaddlePaddle 版本关系: PaddleDetection 依赖 PaddlePaddle 版本关系:
| PaddleDetection版本 | PaddlePaddle版本 | 备注 | | PaddleDetection版本 | PaddlePaddle版本 | 备注 |
| :----------------: | :---------------: | :-------: | | :------------------: | :---------------: | :-------: |
| v0.3 | >=1.7 | -- | | release/0.3 | >=1.7 | -- |
| v0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 | | release/0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 |
| v0.5 | >= 1.8.4 | 大部分模型>=1.8.4即可运行,Cascade R-CNN系列模型与SOLOv2依赖2.0.0.rc版本 | | release/0.5 | >= 1.8.4 | 大部分模型>=1.8.4即可运行,Cascade R-CNN系列模型与SOLOv2依赖2.0.0.rc版本 |
| release/2.0-rc | >= 2.0.1 | -- |
``` ```
# install paddlepaddle # install paddlepaddle
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# 如果您的机器安装的是CUDA9,请运行以下命令安装 # 如果您的机器安装的是CUDA9,请运行以下命令安装
python -m pip install paddlepaddle-gpu==1.8.4.post97 -i https://mirror.baidu.com/pypi/simple python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple
如果您的机器安装的是CUDA10,请运行以下命令安装 如果您的机器安装的是CUDA10.1,请运行以下命令安装
python -m pip install paddlepaddle-gpu==1.8.4.post107 -i https://mirror.baidu.com/pypi/simple python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
如果您的机器是CPU,请运行以下命令安装 如果您的机器是CPU,请运行以下命令安装
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
python -m pip install paddlepaddle==1.8.4 -i https://mirror.baidu.com/pypi/simple
``` ```
更多的安装方式如conda, docker安装,请参考[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作 更多的安装方式如conda, docker安装,请参考[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作
请确保您的PaddlePaddle安装成功并且版本不低于需求版本。使用以下命令进行验证。 请确保您的PaddlePaddle安装成功并且版本不低于需求版本。使用以下命令进行验证。
``` ```
# 在您的Python解释器中确认PaddlePaddle安装成功 # 在您的Python解释器中确认PaddlePaddle安装成功
>>> import paddle.fluid as fluid >>> import paddle
>>> fluid.install_check.run_check() >>> paddle.utils.run_check()
# 确认PaddlePaddle版本 # 确认PaddlePaddle版本
python -c "import paddle; print(paddle.__version__)" python -c "import paddle; print(paddle.__version__)"
...@@ -86,7 +85,7 @@ python -c "import paddle; print(paddle.__version__)" ...@@ -86,7 +85,7 @@ python -c "import paddle; print(paddle.__version__)"
**安装Python依赖库:** **安装Python依赖库:**
Python依赖库在[requirements.txt](https://github.com/PaddlePaddle/PaddleDetection/blob/master/requirements.txt)中给出,可通过如下命令安装: Python依赖库在[requirements.txt](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/requirements.txt) 中给出,可通过如下命令安装:
``` ```
pip install -r requirements.txt pip install -r requirements.txt
......
English | [简体中文](QUICK_STARTED_cn.md) English | [简体中文](QUICK_STARTED_cn.md)
# Quick Start # Quick Start
In order to enable users to quickly produce models in a short time and master the use of PaddleDetection, this tutorial uses a pre-trained detection model to finetune small data sets. A good model can be produced in a short period of time. In actual business, it is recommended that users select a suitable model configuration file for adaptation according to their needs.
This tutorial fine-tunes a tiny dataset by pretrained detection model for users to get a model and learn PaddleDetection quickly. The model can be trained in around 20min with good performance. - **Set GPU**
- **Note: before started, need to specifiy the GPU device as follows.**
```bash ```bash
export CUDA_VISIBLE_DEVICES=0 export CUDA_VISIBLE_DEVICES=0
``` ```
## Data Preparation ## Quick Start
```
Dataset refers to [Kaggle](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection), which contains 240 images in train dataset and 60 images in test dataset. Data categories are apple, orange and banana. Download [here](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar) and uncompress the dataset after download, script for data preparation is located at [download_fruit.py](../../dataset/fruit/download_fruit.py). Command is as follows: # predict an image using PP-YOLO
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
```bash
python dataset/fruit/download_fruit.py
``` ```
the result:
Training: ![](../images/000000014439.jpg)
```bash
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml --eval
```
Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset. ## Prepare Dataset
The Dataset is [Kaggle dataset](https://www.kaggle.com/andrewmvd/road-sign-detection) ,Contains 877 images, 4 data categories: crosswalk, speedlimit, stop, trafficlight.
The dataset is divided into training set(contains 701 images) and test set(contains 176 images),[download link](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar).
Meanwhile, loss and mAP can be observed on VisualDL by set `--use_vdl` and `--vdl_log_dir`. But note Python version required >= 3.5 for VisualDL. ```
#
python dataset/roadsign_voc/download_roadsign_voc.py
```
```bash ## Train、Eval、Infer
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \ ### 1、Train
--use_vdl=True \
--vdl_log_dir=vdl_fruit_dir/scalar \
--eval
``` ```
# It will takes about 5 minutes on GPU
# -c set configt file
# -o overwrite the settings in the configuration file
# --eval Evaluate while training, and a model named best_model.pdmodel with the most evaluation results will be automatically saved
Then observe the loss and mAP curve through VisualDL command:
```bash python tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true
visualdl --logdir vdl_fruit_dir/scalar/ --host <host_IP> --port <port_num>
``` ```
Result on VisualDL is shown below: If you want to observe the loss change curve in real time through VisualDL, add --use_vdl=true to the training command, and set the log save path through --vdl_log_dir.
**Note: VisualDL need Python>=3.5**
![](../images/visualdl_fruit.jpg) Please install [VisualDL](https://github.com/PaddlePaddle/VisualDL) first
```
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
Model can be downloaded [here](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar) ```
python -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml \
--use_vdl=true \
--vdl_log_dir=vdl_dir/scalar \
--eval
```
View the change curve in real time through the visualdl command:
```
visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num>
```
Evaluation: ### 2、Eval
```
# Eval using best_model by default
# -c set config file
# -o overwrite the settings in the configuration file
```bash CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true
python -u tools/eval.py -c configs/yolov3_mobilenet_v1_fruit.yml
``` ```
Inference:
```bash ### 3、Infer
python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar \
--infer_img=demo/orange_71.jpg
``` ```
# -c set config file
# -o overwrite the settings in the configuration file
# --infer_img image path
# After the prediction is over, an image of the same name with the prediction result will be generated in the output folder
Inference images are shown below: python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png
```
![](../../demo/orange_71.jpg)
![](../images/orange_71_detection.jpg) The result is as shown below:
For detailed infomation of training and evalution, please refer to [GETTING_STARTED.md](GETTING_STARTED.md). ![](../images/road554.png)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册