未验证 提交 87cb019d 编写于 作者: C cnn 提交者: GitHub

[Doc] update install doc (#2316)

* Update install doc and deploy doc.
上级 8635791f
......@@ -67,5 +67,5 @@ yolov3_darknet # 模型目录
### 3.2 编译
仅支持在`Windows``Linux`平台编译和使用
- [Linux 编译指南](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp/docs/linux_build.md)
- [Windows编译指南(使用Visual Studio 2019)](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/cpp/docs/windows_vs2019_build.md)
- [Linux 编译指南](docs/linux_build.md)
- [Windows编译指南(使用Visual Studio 2019)](docs/windows_vs2019_build.md)
......@@ -19,9 +19,9 @@ cat /etc/nv_tegra_release
* (3) 下载`JetPack`,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html) 中的`Preparing a Jetson Developer Kit for Use`章节内容进行刷写系统镜像。
## 下载或编译`Paddle`预测库
本文档使用`Paddle``JetPack4.3`上预先编译好的预测库,请根据硬件在[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 中选择对应版本的`Paddle`预测库。
本文档使用`Paddle``JetPack4.3`上预先编译好的预测库,请根据硬件在[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/build_and_install_lib_cn.html) 中选择对应版本的`Paddle`预测库。
这里选择[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-rc0-nv-jetson-cuda10-cudnn7.6-trt6/paddle_inference.tgz), `Paddle`版本`2.0.0-rc0`,`CUDA`版本`10.0`,`CUDNN`版本`7.6``TensorRT`版本`6`
这里选择[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-nv-jetson-jetpack4.3-all/paddle_inference.tgz), `Paddle`版本`2.0.0-rc0`,`CUDA`版本`10.0`,`CUDNN`版本`7.6``TensorRT`版本`6`
若需要自己在`Jetson`平台上自定义编译`Paddle`库,请参考文档[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)`NVIDIA Jetson嵌入式硬件预测库源码编译`部分内容。
......@@ -34,7 +34,7 @@ cat /etc/nv_tegra_release
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-rc0-nv-jetson-cuda10-cudnn7.6-trt6/paddle_inference.tgz)
解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.0-nv-jetson-jetpack4.3-all/paddle_inference.tgz)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
......
......@@ -19,7 +19,7 @@
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#linux)
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#linux)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
......
......@@ -111,4 +111,4 @@ cd /d D:\projects\PaddleDetection\inference\build\release
detection_demo.exe --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory
```
更详细说明请参考ReadMe文档: [预测和可视化部分](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/README.md)
更详细说明请参考ReadMe文档: [预测和可视化部分](../../deploy/README.md)
......@@ -9,7 +9,6 @@ English | [简体中文](INSTALL_cn.md)
- [PaddlePaddle](#paddlepaddle)
- [Other Dependencies](#other-dependencies)
- [PaddleDetection](#paddle-detection)
- [Datasets](#datasets)
## Introduction
......@@ -17,16 +16,17 @@ English | [简体中文](INSTALL_cn.md)
This document covers how to install PaddleDetection, its dependencies
(including PaddlePaddle), together with COCO and Pascal VOC dataset.
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/master/).
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/).
## Install PaddlePaddle
### Requirements:
- Python2 or Python3 (Only support Python3 for windows)
- OS 64 bit
- Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7),64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 9.0
- cuDNN >= 7.6
- nccl >= 2.1.2
If you need GPU multi-card training, firstly please install NCCL. (Windows does not support nccl).
......@@ -34,24 +34,38 @@ PaddleDetection depends on PaddlePaddle version relationship:
| PaddleDetection version | PaddlePaddle version | tips |
| :----------------: | :---------------: | :-------: |
| v0.3 | >=1.7 | -- |
| v0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 |
| v0.5 | >= 1.8.4 | Most models can run with >= 1.8.4, Cascade R-CNN and SOLOv2 depend on 2.0.0.rc |
| release/0.3 | >=1.7 | -- |
| release/0.4 | >= 1.8.4 | PP-YOLO depends on 1.8.4 |
| release/0.5 | >= 1.8.4 | Cascade R-CNN and SOLOv2 depends on 2.0.0.rc |
| release/2.0-rc | >= 2.0.1 | -- |
If you want install paddlepaddle, please follow the instructions in [installation document](http://www.paddlepaddle.org.cn/).
Please make sure your PaddlePaddle installation was successful and the version
of your PaddlePaddle is not lower than required. Verify with the following commands.
```
# install paddlepaddle
# install paddlepaddle CUDA9.0
python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple
install paddlepaddle CUDA10.0
python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
install paddlepaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
# To check PaddlePaddle installation in your Python interpreter
>>> import paddle.fluid as fluid
>>> fluid.install_check.run_check()
# To check PaddlePaddle version
python -c "import paddle; print(paddle.__version__)"
For more installation methods such as conda, docker installation, please refer to the instructions in the [installation document](https://www.paddlepaddle.org.cn/install/quick)
Please make sure that your PaddlePaddle is installed successfully and the version is not lower than the required version. Use the following command to verify.
```
# check
>>> import paddle
>>> paddle.utils.run_check()
# confirm the paddle's version
python -c "import paddle; print(paddle.__version__)"
```
## Other Dependencies
......@@ -104,108 +118,24 @@ pip install -r requirements.txt
python ppdet/modeling/tests/test_architectures.py
```
## Datasets
PaddleDetection includes support for [COCO](http://cocodataset.org) and [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) by default, please follow these instructions to set up the dataset.
**Create symlinks for local datasets:**
Default dataset path in config files is `dataset/coco` and `dataset/voc`, if the
datasets are already available on disk, you can simply create symlinks to
their directories:
```
ln -sf <path/to/coco> <path/to/paddle_detection>/dataset/coco
ln -sf <path/to/voc> <path/to/paddle_detection>/dataset/voc
```
For Pascal VOC dataset, you should create file list by:
After the test is passed, the following information will be prompted:
```
python dataset/voc/create_list.py
..........
----------------------------------------------------------------------
Ran 12 tests in 2.480s
OK (skipped=2)
```
**Download datasets manually:**
On the other hand, to download the datasets, run the following commands:
**Infer by pretrained-model**
- COCO
Use the pre-trained model to predict the image:
```
python dataset/coco/download_coco.py
# set use_gpu
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
```
`COCO` dataset with directory structures like this:
```
dataset/coco/
├── annotations
│ ├── instances_train2014.json
│ ├── instances_train2017.json
│ ├── instances_val2014.json
│ ├── instances_val2017.json
│ | ...
├── train2017
│ ├── 000000000009.jpg
│ ├── 000000580008.jpg
│ | ...
├── val2017
│ ├── 000000000139.jpg
│ ├── 000000000285.jpg
│ | ...
| ...
```
- Pascal VOC
```
python dataset/voc/download_voc.py
```
An image of the same name with the predicted result will be generated under the `output` folder.
The result is as shown below:
`Pascal VOC` dataset with directory structure like this:
```
dataset/voc/
├── trainval.txt
├── test.txt
├── label_list.txt (optional)
├── VOCdevkit/VOC2007
│ ├── Annotations
│ ├── 001789.xml
│ | ...
│ ├── JPEGImages
│ ├── 001789.jpg
│ | ...
│ ├── ImageSets
│ | ...
├── VOCdevkit/VOC2012
│ ├── Annotations
│ ├── 2011_003876.xml
│ | ...
│ ├── JPEGImages
│ ├── 2011_003876.jpg
│ | ...
│ ├── ImageSets
│ | ...
| ...
```
**NOTE:** If you set `use_default_label=False` in yaml configs, the `label_list.txt`
of Pascal VOC dataset will be read, otherwise, `label_list.txt` is unnecessary and
the default Pascal VOC label list which defined in
[voc\_loader.py](https://github.com/PaddlePaddle/PaddleDetection/blob/master/ppdet/data/source/voc.py) will be used.
**Download datasets automatically:**
If a training session is started but the dataset is not setup properly (e.g,
not found in `dataset/coco` or `dataset/voc`), PaddleDetection can automatically
download them from [COCO-2017](http://images.cocodataset.org) and
[VOC2012](http://host.robots.ox.ac.uk/pascal/VOC), the decompressed datasets
will be cached in `~/.cache/paddle/dataset/` and can be discovered automatically
subsequently.
**NOTE:**
- If you want to use a custom datasets, please refer to [Custom DataSet Document](Custom_DataSet.md)
- For further informations on the datasets, please see [READER.md](../advanced_tutorials/READER.md)
![](../images/000000014439.jpg)
......@@ -13,7 +13,7 @@
这份文档介绍了如何安装PaddleDetection及其依赖项(包括PaddlePaddle)。
PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/master/README.md).
PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/README_cn.md).
## 安装PaddlePaddle
......@@ -22,7 +22,7 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP
- OS 64位操作系统
- Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7),64位版本
- pip/pip3(9.0.1+),64位版本操作系统
- pip/pip3(9.0.1+),64位版本操作系统
- CUDA >= 9.0
- cuDNN >= 7.6
......@@ -30,35 +30,34 @@ PaddleDetection的相关信息,请参考[README.md](https://github.com/PaddleP
PaddleDetection 依赖 PaddlePaddle 版本关系:
| PaddleDetection版本 | PaddlePaddle版本 | 备注 |
| :----------------: | :---------------: | :-------: |
| v0.3 | >=1.7 | -- |
| v0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 |
| v0.5 | >= 1.8.4 | 大部分模型>=1.8.4即可运行,Cascade R-CNN系列模型与SOLOv2依赖2.0.0.rc版本 |
| PaddleDetection版本 | PaddlePaddle版本 | 备注 |
| :------------------: | :---------------: | :-------: |
| release/0.3 | >=1.7 | -- |
| release/0.4 | >= 1.8.4 | PP-YOLO依赖1.8.4 |
| release/0.5 | >= 1.8.4 | 大部分模型>=1.8.4即可运行,Cascade R-CNN系列模型与SOLOv2依赖2.0.0.rc版本 |
| release/2.0-rc | >= 2.0.1 | -- |
```
# install paddlepaddle
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# 如果您的机器安装的是CUDA9,请运行以下命令安装
python -m pip install paddlepaddle-gpu==1.8.4.post97 -i https://mirror.baidu.com/pypi/simple
python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple
如果您的机器安装的是CUDA10,请运行以下命令安装
python -m pip install paddlepaddle-gpu==1.8.4.post107 -i https://mirror.baidu.com/pypi/simple
如果您的机器安装的是CUDA10.1,请运行以下命令安装
python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
如果您的机器是CPU,请运行以下命令安装
python -m pip install paddlepaddle==1.8.4 -i https://mirror.baidu.com/pypi/simple
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
更多的安装方式如conda, docker安装,请参考[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作
请确保您的PaddlePaddle安装成功并且版本不低于需求版本。使用以下命令进行验证。
```
# 在您的Python解释器中确认PaddlePaddle安装成功
>>> import paddle.fluid as fluid
>>> fluid.install_check.run_check()
>>> import paddle
>>> paddle.utils.run_check()
# 确认PaddlePaddle版本
python -c "import paddle; print(paddle.__version__)"
......@@ -86,7 +85,7 @@ python -c "import paddle; print(paddle.__version__)"
**安装Python依赖库:**
Python依赖库在[requirements.txt](https://github.com/PaddlePaddle/PaddleDetection/blob/master/requirements.txt)中给出,可通过如下命令安装:
Python依赖库在[requirements.txt](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/requirements.txt) 中给出,可通过如下命令安装:
```
pip install -r requirements.txt
......
English | [简体中文](QUICK_STARTED_cn.md)
# Quick Start
This tutorial fine-tunes a tiny dataset by pretrained detection model for users to get a model and learn PaddleDetection quickly. The model can be trained in around 20min with good performance.
- **Note: before started, need to specifiy the GPU device as follows.**
In order to enable users to quickly produce models in a short time and master the use of PaddleDetection, this tutorial uses a pre-trained detection model to finetune small data sets. A good model can be produced in a short period of time. In actual business, it is recommended that users select a suitable model configuration file for adaptation according to their needs.
- **Set GPU**
```bash
export CUDA_VISIBLE_DEVICES=0
```
## Data Preparation
Dataset refers to [Kaggle](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection), which contains 240 images in train dataset and 60 images in test dataset. Data categories are apple, orange and banana. Download [here](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar) and uncompress the dataset after download, script for data preparation is located at [download_fruit.py](../../dataset/fruit/download_fruit.py). Command is as follows:
```bash
python dataset/fruit/download_fruit.py
## Quick Start
```
# predict an image using PP-YOLO
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
```
the result:
Training:
![](../images/000000014439.jpg)
```bash
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml --eval
```
Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset.
## Prepare Dataset
The Dataset is [Kaggle dataset](https://www.kaggle.com/andrewmvd/road-sign-detection) ,Contains 877 images, 4 data categories: crosswalk, speedlimit, stop, trafficlight.
The dataset is divided into training set(contains 701 images) and test set(contains 176 images),[download link](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar).
Meanwhile, loss and mAP can be observed on VisualDL by set `--use_vdl` and `--vdl_log_dir`. But note Python version required >= 3.5 for VisualDL.
```
#
python dataset/roadsign_voc/download_roadsign_voc.py
```
```bash
python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \
--use_vdl=True \
--vdl_log_dir=vdl_fruit_dir/scalar \
--eval
## Train、Eval、Infer
### 1、Train
```
# It will takes about 5 minutes on GPU
# -c set configt file
# -o overwrite the settings in the configuration file
# --eval Evaluate while training, and a model named best_model.pdmodel with the most evaluation results will be automatically saved
Then observe the loss and mAP curve through VisualDL command:
```bash
visualdl --logdir vdl_fruit_dir/scalar/ --host <host_IP> --port <port_num>
python tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true
```
Result on VisualDL is shown below:
If you want to observe the loss change curve in real time through VisualDL, add --use_vdl=true to the training command, and set the log save path through --vdl_log_dir.
**Note: VisualDL need Python>=3.5**
![](../images/visualdl_fruit.jpg)
Please install [VisualDL](https://github.com/PaddlePaddle/VisualDL) first
```
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
Model can be downloaded [here](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar)
```
python -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml \
--use_vdl=true \
--vdl_log_dir=vdl_dir/scalar \
--eval
```
View the change curve in real time through the visualdl command:
```
visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num>
```
Evaluation:
### 2、Eval
```
# Eval using best_model by default
# -c set config file
# -o overwrite the settings in the configuration file
```bash
python -u tools/eval.py -c configs/yolov3_mobilenet_v1_fruit.yml
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true
```
Inference:
```bash
python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_fruit.tar \
--infer_img=demo/orange_71.jpg
### 3、Infer
```
# -c set config file
# -o overwrite the settings in the configuration file
# --infer_img image path
# After the prediction is over, an image of the same name with the prediction result will be generated in the output folder
Inference images are shown below:
![](../../demo/orange_71.jpg)
python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png
```
![](../images/orange_71_detection.jpg)
The result is as shown below:
For detailed infomation of training and evalution, please refer to [GETTING_STARTED.md](GETTING_STARTED.md).
![](../images/road554.png)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册