未验证 提交 87b1fccd 编写于 作者: J JYChen 提交者: GitHub

add tinypose models (#4388)

上级 74b0061d
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/tinypose_128x96/model_final
epoch: 420
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 128
train_width: &train_width 96
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [24, 32]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: true
LiteHRNet:
network_type: wider_naive
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.008
schedulers:
- !PiecewiseDecay
milestones: [380, 410]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- AugmentationbyInformantionDropping:
prob_cutout: 0.5
offset_factor: 0.05
num_patch: 1
trainsize: *trainsize
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_DARK:
hmsize: *hmsize
sigma: 1
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 512
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: true
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/tinypose_256x192/model_final
epoch: 420
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: true
LiteHRNet:
network_type: wider_naive
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.002
schedulers:
- !PiecewiseDecay
milestones: [380, 410]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- AugmentationbyInformantionDropping:
prob_cutout: 0.5
offset_factor: 0.05
num_patch: 1
trainsize: *trainsize
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_DARK:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 128
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: true
use_gpu: true
log_iter: 20
save_dir: output
snapshot_epoch: 1
print_flops: false
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
weights: output/picodet_s_320_pedestrian/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
epoch: 300
metric: COCO
num_classes: 1
architecture: PicoDet
PicoDet:
backbone: ESNet
neck: CSPPAN
head: PicoHead
ESNet:
scale: 0.75
feature_maps: [4, 11, 14]
act: hard_swish
channel_ratio: [0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
CSPPAN:
out_channels: 96
use_depthwise: True
num_csp_blocks: 1
num_features: 4
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 96
feat_out: 96
num_convs: 2
num_fpn_stride: 4
norm_type: bn
share_cls_reg: True
fpn_stride: [8, 16, 32, 64]
feat_in_chan: 96
prior_prob: 0.01
reg_max: 7
cell_offset: 0.5
loss_class:
name: VarifocalLoss
use_sigmoid: True
iou_weighted: True
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
assigner:
name: SimOTAAssigner
candidate_topk: 10
iou_weight: 6
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_epochs: 300
- !LinearWarmup
start_factor: 0.1
steps: 300
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.00004
type: L2
TrainDataset:
!COCODataSet
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
worker_num: 8
TrainReader:
sample_transforms:
- Decode: {}
- RandomCrop: {}
- RandomFlip: {prob: 0.5}
- RandomDistort: {}
batch_transforms:
- BatchRandomResize: {target_size: [256, 288, 320, 352, 384], random_size: True, random_interp: True, keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_size: 128
shuffle: true
drop_last: true
collate_batch: false
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 8
shuffle: false
TestReader:
inputs_def:
image_shape: [1, 3, 320, 320]
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
...@@ -108,6 +108,37 @@ def get_affine_transform(center, ...@@ -108,6 +108,37 @@ def get_affine_transform(center,
return trans return trans
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
def rotate_point(pt, angle_rad): def rotate_point(pt, angle_rad):
"""Rotate a point by an angle. """Rotate a point by an angle.
...@@ -154,6 +185,7 @@ class TopDownEvalAffine(object): ...@@ -154,6 +185,7 @@ class TopDownEvalAffine(object):
Args: Args:
trainsize (list): [w, h], the standard size used to train trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords records(dict): the dict contained the image and coords
Returns: Returns:
...@@ -161,19 +193,29 @@ class TopDownEvalAffine(object): ...@@ -161,19 +193,29 @@ class TopDownEvalAffine(object):
""" """
def __init__(self, trainsize): def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, image, im_info): def __call__(self, image, im_info):
rot = 0 rot = 0
imshape = im_info['im_shape'][::-1] imshape = im_info['im_shape'][::-1]
center = im_info['center'] if 'center' in im_info else imshape / 2. center = im_info['center'] if 'center' in im_info else imshape / 2.
scale = im_info['scale'] if 'scale' in im_info else imshape scale = im_info['scale'] if 'scale' in im_info else imshape
trans = get_affine_transform(center, scale, rot, self.trainsize) if self.use_udp:
image = cv2.warpAffine( trans = get_warp_matrix(
image, rot, center * 2.0,
trans, (int(self.trainsize[0]), int(self.trainsize[1])), [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
flags=cv2.INTER_LINEAR) image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
return image, im_info return image, im_info
......
...@@ -28,7 +28,7 @@ import numpy as np ...@@ -28,7 +28,7 @@ import numpy as np
import math import math
import copy import copy
from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform, get_warp_matrix
from ppdet.core.workspace import serializable from ppdet.core.workspace import serializable
from ppdet.utils.logger import setup_logger from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__) logger = setup_logger(__name__)
...@@ -36,10 +36,19 @@ logger = setup_logger(__name__) ...@@ -36,10 +36,19 @@ logger = setup_logger(__name__)
registered_ops = [] registered_ops = []
__all__ = [ __all__ = [
'RandomAffine', 'KeyPointFlip', 'TagGenerate', 'ToHeatmaps', 'RandomAffine',
'NormalizePermute', 'EvalAffine', 'RandomFlipHalfBodyTransform', 'KeyPointFlip',
'TopDownAffine', 'ToHeatmapsTopDown', 'ToHeatmapsTopDown_DARK', 'TagGenerate',
'TopDownEvalAffine' 'ToHeatmaps',
'NormalizePermute',
'EvalAffine',
'RandomFlipHalfBodyTransform',
'TopDownAffine',
'ToHeatmapsTopDown',
'ToHeatmapsTopDown_DARK',
'ToHeatmapsTopDown_UDP',
'TopDownEvalAffine',
'AugmentationbyInformantionDropping',
] ]
...@@ -96,37 +105,6 @@ class KeyPointFlip(object): ...@@ -96,37 +105,6 @@ class KeyPointFlip(object):
return records return records
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = math.cos(theta) * scale_x
matrix[0, 1] = -math.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * math.cos(theta) + 0.5 * size_input[1] *
math.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = math.sin(theta) * scale_y
matrix[1, 1] = math.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * math.sin(theta) - 0.5 * size_input[1] *
math.cos(theta) + 0.5 * size_target[1])
return matrix
@register_keypointop @register_keypointop
class RandomAffine(object): class RandomAffine(object):
"""apply affine transform to image, mask and coords """apply affine transform to image, mask and coords
...@@ -531,12 +509,72 @@ class RandomFlipHalfBodyTransform(object): ...@@ -531,12 +509,72 @@ class RandomFlipHalfBodyTransform(object):
return records return records
@register_keypointop
class AugmentationbyInformantionDropping(object):
"""AID: Augmentation by Informantion Dropping. Please refer
to https://arxiv.org/abs/2008.07139
Args:
prob_cutout (float): The probability of the Cutout augmentation.
offset_factor (float): Offset factor of cutout center.
num_patch (int): Number of patches to be cutout.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self,
trainsize,
prob_cutout=0.0,
offset_factor=0.2,
num_patch=1):
self.prob_cutout = prob_cutout
self.offset_factor = offset_factor
self.num_patch = num_patch
self.trainsize = trainsize
def _cutout(self, img, joints, joints_vis):
height, width, _ = img.shape
img = img.reshape((height * width, -1))
feat_x_int = np.arange(0, width)
feat_y_int = np.arange(0, height)
feat_x_int, feat_y_int = np.meshgrid(feat_x_int, feat_y_int)
feat_x_int = feat_x_int.reshape((-1, ))
feat_y_int = feat_y_int.reshape((-1, ))
for _ in range(self.num_patch):
vis_idx, _ = np.where(joints_vis > 0)
occlusion_joint_id = np.random.choice(vis_idx)
center = joints[occlusion_joint_id, 0:2]
offset = np.random.randn(2) * self.trainsize[0] * self.offset_factor
center = center + offset
radius = np.random.uniform(0.1, 0.2) * self.trainsize[0]
x_offset = (center[0] - feat_x_int) / radius
y_offset = (center[1] - feat_y_int) / radius
dis = x_offset**2 + y_offset**2
keep_pos = np.where((dis <= 1) & (dis >= 0))[0]
img[keep_pos, :] = 0
img = img.reshape((height, width, -1))
return img
def __call__(self, records):
img = records['image']
joints = records['joints']
joints_vis = records['joints_vis']
if np.random.rand() < self.prob_cutout:
img = self._cutout(img, joints, joints_vis)
records['image'] = img
return records
@register_keypointop @register_keypointop
class TopDownAffine(object): class TopDownAffine(object):
"""apply affine transform to image and coords """apply affine transform to image and coords
Args: Args:
trainsize (list): [w, h], the standard size used to train trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords records(dict): the dict contained the image and coords
Returns: Returns:
...@@ -544,26 +582,36 @@ class TopDownAffine(object): ...@@ -544,26 +582,36 @@ class TopDownAffine(object):
""" """
def __init__(self, trainsize): def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, records): def __call__(self, records):
image = records['image'] image = records['image']
joints = records['joints'] joints = records['joints']
joints_vis = records['joints_vis'] joints_vis = records['joints_vis']
rot = records['rotate'] if "rotate" in records else 0 rot = records['rotate'] if "rotate" in records else 0
trans = get_affine_transform(records['center'], records['scale'] * 200, if self.use_udp:
rot, self.trainsize) trans = get_warp_matrix(
trans_joint = get_affine_transform( rot, records['center'] * 2.0,
records['center'], records['scale'] * 200, rot, [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0],
[self.trainsize[0] / 4, self.trainsize[1] / 4]) records['scale'] * 200.0)
image = cv2.warpAffine( image = cv2.warpAffine(
image, image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])), trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR) flags=cv2.INTER_LINEAR)
for i in range(joints.shape[0]): joints[:, 0:2] = warp_affine_joints(joints[:, 0:2].copy(), trans)
if joints_vis[i, 0] > 0.0: else:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans_joint) trans = get_affine_transform(records['center'], records['scale'] *
200, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
for i in range(joints.shape[0]):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
records['image'] = image records['image'] = image
records['joints'] = joints records['joints'] = joints
...@@ -576,6 +624,7 @@ class TopDownEvalAffine(object): ...@@ -576,6 +624,7 @@ class TopDownEvalAffine(object):
Args: Args:
trainsize (list): [w, h], the standard size used to train trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords records(dict): the dict contained the image and coords
Returns: Returns:
...@@ -583,8 +632,9 @@ class TopDownEvalAffine(object): ...@@ -583,8 +632,9 @@ class TopDownEvalAffine(object):
""" """
def __init__(self, trainsize): def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, records): def __call__(self, records):
image = records['image'] image = records['image']
...@@ -592,11 +642,21 @@ class TopDownEvalAffine(object): ...@@ -592,11 +642,21 @@ class TopDownEvalAffine(object):
imshape = records['im_shape'][::-1] imshape = records['im_shape'][::-1]
center = imshape / 2. center = imshape / 2.
scale = imshape scale = imshape
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine( if self.use_udp:
image, trans = get_warp_matrix(
trans, (int(self.trainsize[0]), int(self.trainsize[1])), rot, center * 2.0,
flags=cv2.INTER_LINEAR) [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
records['image'] = image records['image'] = image
return records return records
...@@ -632,10 +692,10 @@ class ToHeatmapsTopDown(object): ...@@ -632,10 +692,10 @@ class ToHeatmapsTopDown(object):
target = np.zeros( target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32) (num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3 tmp_size = self.sigma * 3
feat_stride = image_size / self.hmsize
for joint_id in range(num_joints): for joint_id in range(num_joints):
feat_stride = image_size / self.hmsize mu_x = int(joints[joint_id][0] + 0.5) / feat_stride[0]
mu_x = int(joints[joint_id][0] + 0.5) mu_y = int(joints[joint_id][1] + 0.5) / feat_stride[1]
mu_y = int(joints[joint_id][1] + 0.5)
# Check that any part of the gaussian is in-bounds # Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
...@@ -693,14 +753,17 @@ class ToHeatmapsTopDown_DARK(object): ...@@ -693,14 +753,17 @@ class ToHeatmapsTopDown_DARK(object):
joints = records['joints'] joints = records['joints']
joints_vis = records['joints_vis'] joints_vis = records['joints_vis']
num_joints = joints.shape[0] num_joints = joints.shape[0]
image_size = np.array(
[records['image'].shape[1], records['image'].shape[0]])
target_weight = np.ones((num_joints, 1), dtype=np.float32) target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0] target_weight[:, 0] = joints_vis[:, 0]
target = np.zeros( target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32) (num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3 tmp_size = self.sigma * 3
feat_stride = image_size / self.hmsize
for joint_id in range(num_joints): for joint_id in range(num_joints):
mu_x = joints[joint_id][0] mu_x = joints[joint_id][0] / feat_stride[0]
mu_y = joints[joint_id][1] mu_y = joints[joint_id][1] / feat_stride[1]
# Check that any part of the gaussian is in-bounds # Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
...@@ -723,3 +786,74 @@ class ToHeatmapsTopDown_DARK(object): ...@@ -723,3 +786,74 @@ class ToHeatmapsTopDown_DARK(object):
del records['joints'], records['joints_vis'] del records['joints'], records['joints_vis']
return records return records
@register_keypointop
class ToHeatmapsTopDown_UDP(object):
"""to generate the gaussian heatmaps of keypoint for heatmap loss.
ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing
for Human Pose Estimation (CVPR 2020).
Args:
hmsize (list): [w, h] output heatmap's size
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the heatmaps used to heatmaploss
"""
def __init__(self, hmsize, sigma):
super(ToHeatmapsTopDown_UDP, self).__init__()
self.hmsize = np.array(hmsize)
self.sigma = sigma
def __call__(self, records):
joints = records['joints']
joints_vis = records['joints_vis']
num_joints = joints.shape[0]
image_size = np.array(
[records['image'].shape[1], records['image'].shape[0]])
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
feat_stride = (image_size - 1.0) / (self.hmsize - 1.0)
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= self.hmsize[0] or ul[1] >= self.hmsize[1] or br[
0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
mu_x_ac = joints[joint_id][0] / feat_stride[0]
mu_y_ac = joints[joint_id][1] / feat_stride[1]
x0 = y0 = size // 2
x0 += mu_x_ac - mu_x
y0 += mu_y_ac - mu_y
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * self.sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.hmsize[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.hmsize[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.hmsize[0])
img_y = max(0, ul[1]), min(br[1], self.hmsize[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[
0]:g_y[1], g_x[0]:g_x[1]]
records['target'] = target
records['target_weight'] = target_weight
del records['joints'], records['joints_vis']
return records
...@@ -95,6 +95,37 @@ def get_affine_transform(center, ...@@ -95,6 +95,37 @@ def get_affine_transform(center,
return trans return trans
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
def _get_3rd_point(a, b): def _get_3rd_point(a, b):
"""To calculate the affine matrix, three pairs of points are required. This """To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b. function is used to get the 3rd point, given 2D points a & b.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册