未验证 提交 87b1fccd 编写于 作者: J JYChen 提交者: GitHub

add tinypose models (#4388)

上级 74b0061d
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/tinypose_128x96/model_final
epoch: 420
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 128
train_width: &train_width 96
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [24, 32]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: true
LiteHRNet:
network_type: wider_naive
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.008
schedulers:
- !PiecewiseDecay
milestones: [380, 410]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- AugmentationbyInformantionDropping:
prob_cutout: 0.5
offset_factor: 0.05
num_patch: 1
trainsize: *trainsize
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_DARK:
hmsize: *hmsize
sigma: 1
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 512
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: true
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/tinypose_256x192/model_final
epoch: 420
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: true
LiteHRNet:
network_type: wider_naive
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.002
schedulers:
- !PiecewiseDecay
milestones: [380, 410]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- AugmentationbyInformantionDropping:
prob_cutout: 0.5
offset_factor: 0.05
num_patch: 1
trainsize: *trainsize
- TopDownAffine:
trainsize: *trainsize
use_udp: true
- ToHeatmapsTopDown_DARK:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 128
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
use_udp: true
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
fuse_normalize: true
use_gpu: true
log_iter: 20
save_dir: output
snapshot_epoch: 1
print_flops: false
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
weights: output/picodet_s_320_pedestrian/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
epoch: 300
metric: COCO
num_classes: 1
architecture: PicoDet
PicoDet:
backbone: ESNet
neck: CSPPAN
head: PicoHead
ESNet:
scale: 0.75
feature_maps: [4, 11, 14]
act: hard_swish
channel_ratio: [0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
CSPPAN:
out_channels: 96
use_depthwise: True
num_csp_blocks: 1
num_features: 4
PicoHead:
conv_feat:
name: PicoFeat
feat_in: 96
feat_out: 96
num_convs: 2
num_fpn_stride: 4
norm_type: bn
share_cls_reg: True
fpn_stride: [8, 16, 32, 64]
feat_in_chan: 96
prior_prob: 0.01
reg_max: 7
cell_offset: 0.5
loss_class:
name: VarifocalLoss
use_sigmoid: True
iou_weighted: True
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
assigner:
name: SimOTAAssigner
candidate_topk: 10
iou_weight: 6
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_epochs: 300
- !LinearWarmup
start_factor: 0.1
steps: 300
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.00004
type: L2
TrainDataset:
!COCODataSet
image_dir: ""
anno_path: aic_coco_train_cocoformat.json
dataset_dir: dataset
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
worker_num: 8
TrainReader:
sample_transforms:
- Decode: {}
- RandomCrop: {}
- RandomFlip: {prob: 0.5}
- RandomDistort: {}
batch_transforms:
- BatchRandomResize: {target_size: [256, 288, 320, 352, 384], random_size: True, random_interp: True, keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_size: 128
shuffle: true
drop_last: true
collate_batch: false
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 8
shuffle: false
TestReader:
inputs_def:
image_shape: [1, 3, 320, 320]
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
......@@ -108,6 +108,37 @@ def get_affine_transform(center,
return trans
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
def rotate_point(pt, angle_rad):
"""Rotate a point by an angle.
......@@ -154,6 +185,7 @@ class TopDownEvalAffine(object):
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
......@@ -161,19 +193,29 @@ class TopDownEvalAffine(object):
"""
def __init__(self, trainsize):
def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, image, im_info):
rot = 0
imshape = im_info['im_shape'][::-1]
center = im_info['center'] if 'center' in im_info else imshape / 2.
scale = im_info['scale'] if 'scale' in im_info else imshape
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
if self.use_udp:
trans = get_warp_matrix(
rot, center * 2.0,
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
return image, im_info
......
......@@ -28,7 +28,7 @@ import numpy as np
import math
import copy
from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform
from ...modeling.keypoint_utils import get_affine_mat_kernel, warp_affine_joints, get_affine_transform, affine_transform, get_warp_matrix
from ppdet.core.workspace import serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
......@@ -36,10 +36,19 @@ logger = setup_logger(__name__)
registered_ops = []
__all__ = [
'RandomAffine', 'KeyPointFlip', 'TagGenerate', 'ToHeatmaps',
'NormalizePermute', 'EvalAffine', 'RandomFlipHalfBodyTransform',
'TopDownAffine', 'ToHeatmapsTopDown', 'ToHeatmapsTopDown_DARK',
'TopDownEvalAffine'
'RandomAffine',
'KeyPointFlip',
'TagGenerate',
'ToHeatmaps',
'NormalizePermute',
'EvalAffine',
'RandomFlipHalfBodyTransform',
'TopDownAffine',
'ToHeatmapsTopDown',
'ToHeatmapsTopDown_DARK',
'ToHeatmapsTopDown_UDP',
'TopDownEvalAffine',
'AugmentationbyInformantionDropping',
]
......@@ -96,37 +105,6 @@ class KeyPointFlip(object):
return records
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = math.cos(theta) * scale_x
matrix[0, 1] = -math.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * math.cos(theta) + 0.5 * size_input[1] *
math.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = math.sin(theta) * scale_y
matrix[1, 1] = math.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * math.sin(theta) - 0.5 * size_input[1] *
math.cos(theta) + 0.5 * size_target[1])
return matrix
@register_keypointop
class RandomAffine(object):
"""apply affine transform to image, mask and coords
......@@ -531,12 +509,72 @@ class RandomFlipHalfBodyTransform(object):
return records
@register_keypointop
class AugmentationbyInformantionDropping(object):
"""AID: Augmentation by Informantion Dropping. Please refer
to https://arxiv.org/abs/2008.07139
Args:
prob_cutout (float): The probability of the Cutout augmentation.
offset_factor (float): Offset factor of cutout center.
num_patch (int): Number of patches to be cutout.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self,
trainsize,
prob_cutout=0.0,
offset_factor=0.2,
num_patch=1):
self.prob_cutout = prob_cutout
self.offset_factor = offset_factor
self.num_patch = num_patch
self.trainsize = trainsize
def _cutout(self, img, joints, joints_vis):
height, width, _ = img.shape
img = img.reshape((height * width, -1))
feat_x_int = np.arange(0, width)
feat_y_int = np.arange(0, height)
feat_x_int, feat_y_int = np.meshgrid(feat_x_int, feat_y_int)
feat_x_int = feat_x_int.reshape((-1, ))
feat_y_int = feat_y_int.reshape((-1, ))
for _ in range(self.num_patch):
vis_idx, _ = np.where(joints_vis > 0)
occlusion_joint_id = np.random.choice(vis_idx)
center = joints[occlusion_joint_id, 0:2]
offset = np.random.randn(2) * self.trainsize[0] * self.offset_factor
center = center + offset
radius = np.random.uniform(0.1, 0.2) * self.trainsize[0]
x_offset = (center[0] - feat_x_int) / radius
y_offset = (center[1] - feat_y_int) / radius
dis = x_offset**2 + y_offset**2
keep_pos = np.where((dis <= 1) & (dis >= 0))[0]
img[keep_pos, :] = 0
img = img.reshape((height, width, -1))
return img
def __call__(self, records):
img = records['image']
joints = records['joints']
joints_vis = records['joints_vis']
if np.random.rand() < self.prob_cutout:
img = self._cutout(img, joints, joints_vis)
records['image'] = img
return records
@register_keypointop
class TopDownAffine(object):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
......@@ -544,26 +582,36 @@ class TopDownAffine(object):
"""
def __init__(self, trainsize):
def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, records):
image = records['image']
joints = records['joints']
joints_vis = records['joints_vis']
rot = records['rotate'] if "rotate" in records else 0
trans = get_affine_transform(records['center'], records['scale'] * 200,
rot, self.trainsize)
trans_joint = get_affine_transform(
records['center'], records['scale'] * 200, rot,
[self.trainsize[0] / 4, self.trainsize[1] / 4])
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
for i in range(joints.shape[0]):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans_joint)
if self.use_udp:
trans = get_warp_matrix(
rot, records['center'] * 2.0,
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0],
records['scale'] * 200.0)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
joints[:, 0:2] = warp_affine_joints(joints[:, 0:2].copy(), trans)
else:
trans = get_affine_transform(records['center'], records['scale'] *
200, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
for i in range(joints.shape[0]):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
records['image'] = image
records['joints'] = joints
......@@ -576,6 +624,7 @@ class TopDownEvalAffine(object):
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
......@@ -583,8 +632,9 @@ class TopDownEvalAffine(object):
"""
def __init__(self, trainsize):
def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, records):
image = records['image']
......@@ -592,11 +642,21 @@ class TopDownEvalAffine(object):
imshape = records['im_shape'][::-1]
center = imshape / 2.
scale = imshape
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
if self.use_udp:
trans = get_warp_matrix(
rot, center * 2.0,
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
records['image'] = image
return records
......@@ -632,10 +692,10 @@ class ToHeatmapsTopDown(object):
target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3
feat_stride = image_size / self.hmsize
for joint_id in range(num_joints):
feat_stride = image_size / self.hmsize
mu_x = int(joints[joint_id][0] + 0.5)
mu_y = int(joints[joint_id][1] + 0.5)
mu_x = int(joints[joint_id][0] + 0.5) / feat_stride[0]
mu_y = int(joints[joint_id][1] + 0.5) / feat_stride[1]
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
......@@ -693,14 +753,17 @@ class ToHeatmapsTopDown_DARK(object):
joints = records['joints']
joints_vis = records['joints_vis']
num_joints = joints.shape[0]
image_size = np.array(
[records['image'].shape[1], records['image'].shape[0]])
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3
feat_stride = image_size / self.hmsize
for joint_id in range(num_joints):
mu_x = joints[joint_id][0]
mu_y = joints[joint_id][1]
mu_x = joints[joint_id][0] / feat_stride[0]
mu_y = joints[joint_id][1] / feat_stride[1]
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
......@@ -723,3 +786,74 @@ class ToHeatmapsTopDown_DARK(object):
del records['joints'], records['joints_vis']
return records
@register_keypointop
class ToHeatmapsTopDown_UDP(object):
"""to generate the gaussian heatmaps of keypoint for heatmap loss.
ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing
for Human Pose Estimation (CVPR 2020).
Args:
hmsize (list): [w, h] output heatmap's size
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the heatmaps used to heatmaploss
"""
def __init__(self, hmsize, sigma):
super(ToHeatmapsTopDown_UDP, self).__init__()
self.hmsize = np.array(hmsize)
self.sigma = sigma
def __call__(self, records):
joints = records['joints']
joints_vis = records['joints_vis']
num_joints = joints.shape[0]
image_size = np.array(
[records['image'].shape[1], records['image'].shape[0]])
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
target = np.zeros(
(num_joints, self.hmsize[1], self.hmsize[0]), dtype=np.float32)
tmp_size = self.sigma * 3
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
feat_stride = (image_size - 1.0) / (self.hmsize - 1.0)
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= self.hmsize[0] or ul[1] >= self.hmsize[1] or br[
0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
mu_x_ac = joints[joint_id][0] / feat_stride[0]
mu_y_ac = joints[joint_id][1] / feat_stride[1]
x0 = y0 = size // 2
x0 += mu_x_ac - mu_x
y0 += mu_y_ac - mu_y
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * self.sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.hmsize[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.hmsize[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.hmsize[0])
img_y = max(0, ul[1]), min(br[1], self.hmsize[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[
0]:g_y[1], g_x[0]:g_x[1]]
records['target'] = target
records['target_weight'] = target_weight
del records['joints'], records['joints_vis']
return records
......@@ -95,6 +95,37 @@ def get_affine_transform(center,
return trans
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
def _get_3rd_point(a, b):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册