Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
87b1fccd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
87b1fccd
编写于
10月 29, 2021
作者:
J
JYChen
提交者:
GitHub
10月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tinypose models (#4388)
上级
74b0061d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
710 addition
and
66 deletion
+710
-66
configs/keypoint/tiny_pose/keypoint/tinypose_128x96.yml
configs/keypoint/tiny_pose/keypoint/tinypose_128x96.yml
+147
-0
configs/keypoint/tiny_pose/keypoint/tinypose_256x192.yml
configs/keypoint/tiny_pose/keypoint/tinypose_256x192.yml
+147
-0
configs/keypoint/tiny_pose/pedestrian_detection/picodet_s_320_pedestrian.yml
...ny_pose/pedestrian_detection/picodet_s_320_pedestrian.yml
+143
-0
deploy/python/keypoint_preprocess.py
deploy/python/keypoint_preprocess.py
+48
-6
ppdet/data/transform/keypoint_operators.py
ppdet/data/transform/keypoint_operators.py
+194
-60
ppdet/modeling/keypoint_utils.py
ppdet/modeling/keypoint_utils.py
+31
-0
未找到文件。
configs/keypoint/tiny_pose/keypoint/tinypose_128x96.yml
0 → 100644
浏览文件 @
87b1fccd
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/tinypose_128x96/model_final
epoch
:
420
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
128
train_width
:
&train_width
96
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
24
,
32
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
TopDownHRNet
:
backbone
:
LiteHRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
40
loss
:
KeyPointMSELoss
use_dark
:
true
LiteHRNet
:
network_type
:
wider_naive
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
loss_scale
:
1.0
#####optimizer
LearningRate
:
base_lr
:
0.008
schedulers
:
-
!PiecewiseDecay
milestones
:
[
380
,
410
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
500
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
"
"
anno_path
:
aic_coco_train_cocoformat.json
dataset_dir
:
dataset
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.25
rot
:
30
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
AugmentationbyInformantionDropping
:
prob_cutout
:
0.5
offset_factor
:
0.05
num_patch
:
1
trainsize
:
*trainsize
-
TopDownAffine
:
trainsize
:
*trainsize
use_udp
:
true
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
1
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
512
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
use_udp
:
true
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
TestReader
:
inputs_def
:
image_shape
:
[
3
,
*train_height
,
*train_width
]
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
fuse_normalize
:
true
configs/keypoint/tiny_pose/keypoint/tinypose_256x192.yml
0 → 100644
浏览文件 @
87b1fccd
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/tinypose_256x192/model_final
epoch
:
420
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
192
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
48
,
64
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
TopDownHRNet
:
backbone
:
LiteHRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
40
loss
:
KeyPointMSELoss
use_dark
:
true
LiteHRNet
:
network_type
:
wider_naive
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
loss_scale
:
1.0
#####optimizer
LearningRate
:
base_lr
:
0.002
schedulers
:
-
!PiecewiseDecay
milestones
:
[
380
,
410
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
500
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
"
"
anno_path
:
aic_coco_train_cocoformat.json
dataset_dir
:
dataset
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.25
rot
:
30
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
AugmentationbyInformantionDropping
:
prob_cutout
:
0.5
offset_factor
:
0.05
num_patch
:
1
trainsize
:
*trainsize
-
TopDownAffine
:
trainsize
:
*trainsize
use_udp
:
true
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
128
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
use_udp
:
true
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
TestReader
:
inputs_def
:
image_shape
:
[
3
,
*train_height
,
*train_width
]
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
fuse_normalize
:
true
configs/keypoint/tiny_pose/pedestrian_detection/picodet_s_320_pedestrian.yml
0 → 100644
浏览文件 @
87b1fccd
use_gpu
:
true
log_iter
:
20
save_dir
:
output
snapshot_epoch
:
1
print_flops
:
false
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
weights
:
output/picodet_s_320_pedestrian/model_final
find_unused_parameters
:
True
use_ema
:
true
cycle_epoch
:
40
snapshot_epoch
:
10
epoch
:
300
metric
:
COCO
num_classes
:
1
architecture
:
PicoDet
PicoDet
:
backbone
:
ESNet
neck
:
CSPPAN
head
:
PicoHead
ESNet
:
scale
:
0.75
feature_maps
:
[
4
,
11
,
14
]
act
:
hard_swish
channel_ratio
:
[
0.875
,
0.5
,
0.5
,
0.5
,
0.625
,
0.5
,
0.625
,
0.5
,
0.5
,
0.5
,
0.5
,
0.5
,
0.5
]
CSPPAN
:
out_channels
:
96
use_depthwise
:
True
num_csp_blocks
:
1
num_features
:
4
PicoHead
:
conv_feat
:
name
:
PicoFeat
feat_in
:
96
feat_out
:
96
num_convs
:
2
num_fpn_stride
:
4
norm_type
:
bn
share_cls_reg
:
True
fpn_stride
:
[
8
,
16
,
32
,
64
]
feat_in_chan
:
96
prior_prob
:
0.01
reg_max
:
7
cell_offset
:
0.5
loss_class
:
name
:
VarifocalLoss
use_sigmoid
:
True
iou_weighted
:
True
loss_weight
:
1.0
loss_dfl
:
name
:
DistributionFocalLoss
loss_weight
:
0.25
loss_bbox
:
name
:
GIoULoss
loss_weight
:
2.0
assigner
:
name
:
SimOTAAssigner
candidate_topk
:
10
iou_weight
:
6
nms
:
name
:
MultiClassNMS
nms_top_k
:
1000
keep_top_k
:
100
score_threshold
:
0.025
nms_threshold
:
0.6
LearningRate
:
base_lr
:
0.4
schedulers
:
-
!CosineDecay
max_epochs
:
300
-
!LinearWarmup
start_factor
:
0.1
steps
:
300
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.00004
type
:
L2
TrainDataset
:
!COCODataSet
image_dir
:
"
"
anno_path
:
aic_coco_train_cocoformat.json
dataset_dir
:
dataset
data_fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
,
'
is_crowd'
]
EvalDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
TestDataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
worker_num
:
8
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomCrop
:
{}
-
RandomFlip
:
{
prob
:
0.5
}
-
RandomDistort
:
{}
batch_transforms
:
-
BatchRandomResize
:
{
target_size
:
[
256
,
288
,
320
,
352
,
384
],
random_size
:
True
,
random_interp
:
True
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_size
:
128
shuffle
:
true
drop_last
:
true
collate_batch
:
false
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
],
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
8
shuffle
:
false
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
320
,
320
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
320
,
320
],
keep_ratio
:
False
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
deploy/python/keypoint_preprocess.py
浏览文件 @
87b1fccd
...
...
@@ -108,6 +108,37 @@ def get_affine_transform(center,
return
trans
def
get_warp_matrix
(
theta
,
size_input
,
size_dst
,
size_target
):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta
=
np
.
deg2rad
(
theta
)
matrix
=
np
.
zeros
((
2
,
3
),
dtype
=
np
.
float32
)
scale_x
=
size_dst
[
0
]
/
size_target
[
0
]
scale_y
=
size_dst
[
1
]
/
size_target
[
1
]
matrix
[
0
,
0
]
=
np
.
cos
(
theta
)
*
scale_x
matrix
[
0
,
1
]
=
-
np
.
sin
(
theta
)
*
scale_x
matrix
[
0
,
2
]
=
scale_x
*
(
-
0.5
*
size_input
[
0
]
*
np
.
cos
(
theta
)
+
0.5
*
size_input
[
1
]
*
np
.
sin
(
theta
)
+
0.5
*
size_target
[
0
])
matrix
[
1
,
0
]
=
np
.
sin
(
theta
)
*
scale_y
matrix
[
1
,
1
]
=
np
.
cos
(
theta
)
*
scale_y
matrix
[
1
,
2
]
=
scale_y
*
(
-
0.5
*
size_input
[
0
]
*
np
.
sin
(
theta
)
-
0.5
*
size_input
[
1
]
*
np
.
cos
(
theta
)
+
0.5
*
size_target
[
1
])
return
matrix
def
rotate_point
(
pt
,
angle_rad
):
"""Rotate a point by an angle.
...
...
@@ -154,6 +185,7 @@ class TopDownEvalAffine(object):
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
...
...
@@ -161,19 +193,29 @@ class TopDownEvalAffine(object):
"""
def
__init__
(
self
,
trainsize
):
def
__init__
(
self
,
trainsize
,
use_udp
=
False
):
self
.
trainsize
=
trainsize
self
.
use_udp
=
use_udp
def
__call__
(
self
,
image
,
im_info
):
rot
=
0
imshape
=
im_info
[
'im_shape'
][::
-
1
]
center
=
im_info
[
'center'
]
if
'center'
in
im_info
else
imshape
/
2.
scale
=
im_info
[
'scale'
]
if
'scale'
in
im_info
else
imshape
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
self
.
use_udp
:
trans
=
get_warp_matrix
(
rot
,
center
*
2.0
,
[
self
.
trainsize
[
0
]
-
1.0
,
self
.
trainsize
[
1
]
-
1.0
],
scale
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
else
:
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
return
image
,
im_info
...
...
ppdet/data/transform/keypoint_operators.py
浏览文件 @
87b1fccd
...
...
@@ -28,7 +28,7 @@ import numpy as np
import
math
import
copy
from
...modeling.keypoint_utils
import
get_affine_mat_kernel
,
warp_affine_joints
,
get_affine_transform
,
affine_transform
from
...modeling.keypoint_utils
import
get_affine_mat_kernel
,
warp_affine_joints
,
get_affine_transform
,
affine_transform
,
get_warp_matrix
from
ppdet.core.workspace
import
serializable
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
...
...
@@ -36,10 +36,19 @@ logger = setup_logger(__name__)
registered_ops
=
[]
__all__
=
[
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'TopDownEvalAffine'
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'ToHeatmapsTopDown_UDP'
,
'TopDownEvalAffine'
,
'AugmentationbyInformantionDropping'
,
]
...
...
@@ -96,37 +105,6 @@ class KeyPointFlip(object):
return
records
def
get_warp_matrix
(
theta
,
size_input
,
size_dst
,
size_target
):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta
=
np
.
deg2rad
(
theta
)
matrix
=
np
.
zeros
((
2
,
3
),
dtype
=
np
.
float32
)
scale_x
=
size_dst
[
0
]
/
size_target
[
0
]
scale_y
=
size_dst
[
1
]
/
size_target
[
1
]
matrix
[
0
,
0
]
=
math
.
cos
(
theta
)
*
scale_x
matrix
[
0
,
1
]
=
-
math
.
sin
(
theta
)
*
scale_x
matrix
[
0
,
2
]
=
scale_x
*
(
-
0.5
*
size_input
[
0
]
*
math
.
cos
(
theta
)
+
0.5
*
size_input
[
1
]
*
math
.
sin
(
theta
)
+
0.5
*
size_target
[
0
])
matrix
[
1
,
0
]
=
math
.
sin
(
theta
)
*
scale_y
matrix
[
1
,
1
]
=
math
.
cos
(
theta
)
*
scale_y
matrix
[
1
,
2
]
=
scale_y
*
(
-
0.5
*
size_input
[
0
]
*
math
.
sin
(
theta
)
-
0.5
*
size_input
[
1
]
*
math
.
cos
(
theta
)
+
0.5
*
size_target
[
1
])
return
matrix
@
register_keypointop
class
RandomAffine
(
object
):
"""apply affine transform to image, mask and coords
...
...
@@ -531,12 +509,72 @@ class RandomFlipHalfBodyTransform(object):
return
records
@
register_keypointop
class
AugmentationbyInformantionDropping
(
object
):
"""AID: Augmentation by Informantion Dropping. Please refer
to https://arxiv.org/abs/2008.07139
Args:
prob_cutout (float): The probability of the Cutout augmentation.
offset_factor (float): Offset factor of cutout center.
num_patch (int): Number of patches to be cutout.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
trainsize
,
prob_cutout
=
0.0
,
offset_factor
=
0.2
,
num_patch
=
1
):
self
.
prob_cutout
=
prob_cutout
self
.
offset_factor
=
offset_factor
self
.
num_patch
=
num_patch
self
.
trainsize
=
trainsize
def
_cutout
(
self
,
img
,
joints
,
joints_vis
):
height
,
width
,
_
=
img
.
shape
img
=
img
.
reshape
((
height
*
width
,
-
1
))
feat_x_int
=
np
.
arange
(
0
,
width
)
feat_y_int
=
np
.
arange
(
0
,
height
)
feat_x_int
,
feat_y_int
=
np
.
meshgrid
(
feat_x_int
,
feat_y_int
)
feat_x_int
=
feat_x_int
.
reshape
((
-
1
,
))
feat_y_int
=
feat_y_int
.
reshape
((
-
1
,
))
for
_
in
range
(
self
.
num_patch
):
vis_idx
,
_
=
np
.
where
(
joints_vis
>
0
)
occlusion_joint_id
=
np
.
random
.
choice
(
vis_idx
)
center
=
joints
[
occlusion_joint_id
,
0
:
2
]
offset
=
np
.
random
.
randn
(
2
)
*
self
.
trainsize
[
0
]
*
self
.
offset_factor
center
=
center
+
offset
radius
=
np
.
random
.
uniform
(
0.1
,
0.2
)
*
self
.
trainsize
[
0
]
x_offset
=
(
center
[
0
]
-
feat_x_int
)
/
radius
y_offset
=
(
center
[
1
]
-
feat_y_int
)
/
radius
dis
=
x_offset
**
2
+
y_offset
**
2
keep_pos
=
np
.
where
((
dis
<=
1
)
&
(
dis
>=
0
))[
0
]
img
[
keep_pos
,
:]
=
0
img
=
img
.
reshape
((
height
,
width
,
-
1
))
return
img
def
__call__
(
self
,
records
):
img
=
records
[
'image'
]
joints
=
records
[
'joints'
]
joints_vis
=
records
[
'joints_vis'
]
if
np
.
random
.
rand
()
<
self
.
prob_cutout
:
img
=
self
.
_cutout
(
img
,
joints
,
joints_vis
)
records
[
'image'
]
=
img
return
records
@
register_keypointop
class
TopDownAffine
(
object
):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
...
...
@@ -544,26 +582,36 @@ class TopDownAffine(object):
"""
def
__init__
(
self
,
trainsize
):
def
__init__
(
self
,
trainsize
,
use_udp
=
False
):
self
.
trainsize
=
trainsize
self
.
use_udp
=
use_udp
def
__call__
(
self
,
records
):
image
=
records
[
'image'
]
joints
=
records
[
'joints'
]
joints_vis
=
records
[
'joints_vis'
]
rot
=
records
[
'rotate'
]
if
"rotate"
in
records
else
0
trans
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
rot
,
self
.
trainsize
)
trans_joint
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
rot
,
[
self
.
trainsize
[
0
]
/
4
,
self
.
trainsize
[
1
]
/
4
])
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
for
i
in
range
(
joints
.
shape
[
0
]):
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans_joint
)
if
self
.
use_udp
:
trans
=
get_warp_matrix
(
rot
,
records
[
'center'
]
*
2.0
,
[
self
.
trainsize
[
0
]
-
1.0
,
self
.
trainsize
[
1
]
-
1.0
],
records
[
'scale'
]
*
200.0
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
joints
[:,
0
:
2
]
=
warp_affine_joints
(
joints
[:,
0
:
2
].
copy
(),
trans
)
else
:
trans
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
for
i
in
range
(
joints
.
shape
[
0
]):
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
)
records
[
'image'
]
=
image
records
[
'joints'
]
=
joints
...
...
@@ -576,6 +624,7 @@ class TopDownEvalAffine(object):
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
...
...
@@ -583,8 +632,9 @@ class TopDownEvalAffine(object):
"""
def
__init__
(
self
,
trainsize
):
def
__init__
(
self
,
trainsize
,
use_udp
=
False
):
self
.
trainsize
=
trainsize
self
.
use_udp
=
use_udp
def
__call__
(
self
,
records
):
image
=
records
[
'image'
]
...
...
@@ -592,11 +642,21 @@ class TopDownEvalAffine(object):
imshape
=
records
[
'im_shape'
][::
-
1
]
center
=
imshape
/
2.
scale
=
imshape
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
self
.
use_udp
:
trans
=
get_warp_matrix
(
rot
,
center
*
2.0
,
[
self
.
trainsize
[
0
]
-
1.0
,
self
.
trainsize
[
1
]
-
1.0
],
scale
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
else
:
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
records
[
'image'
]
=
image
return
records
...
...
@@ -632,10 +692,10 @@ class ToHeatmapsTopDown(object):
target
=
np
.
zeros
(
(
num_joints
,
self
.
hmsize
[
1
],
self
.
hmsize
[
0
]),
dtype
=
np
.
float32
)
tmp_size
=
self
.
sigma
*
3
feat_stride
=
image_size
/
self
.
hmsize
for
joint_id
in
range
(
num_joints
):
feat_stride
=
image_size
/
self
.
hmsize
mu_x
=
int
(
joints
[
joint_id
][
0
]
+
0.5
)
mu_y
=
int
(
joints
[
joint_id
][
1
]
+
0.5
)
mu_x
=
int
(
joints
[
joint_id
][
0
]
+
0.5
)
/
feat_stride
[
0
]
mu_y
=
int
(
joints
[
joint_id
][
1
]
+
0.5
)
/
feat_stride
[
1
]
# Check that any part of the gaussian is in-bounds
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
...
...
@@ -693,14 +753,17 @@ class ToHeatmapsTopDown_DARK(object):
joints
=
records
[
'joints'
]
joints_vis
=
records
[
'joints_vis'
]
num_joints
=
joints
.
shape
[
0
]
image_size
=
np
.
array
(
[
records
[
'image'
].
shape
[
1
],
records
[
'image'
].
shape
[
0
]])
target_weight
=
np
.
ones
((
num_joints
,
1
),
dtype
=
np
.
float32
)
target_weight
[:,
0
]
=
joints_vis
[:,
0
]
target
=
np
.
zeros
(
(
num_joints
,
self
.
hmsize
[
1
],
self
.
hmsize
[
0
]),
dtype
=
np
.
float32
)
tmp_size
=
self
.
sigma
*
3
feat_stride
=
image_size
/
self
.
hmsize
for
joint_id
in
range
(
num_joints
):
mu_x
=
joints
[
joint_id
][
0
]
mu_y
=
joints
[
joint_id
][
1
]
mu_x
=
joints
[
joint_id
][
0
]
/
feat_stride
[
0
]
mu_y
=
joints
[
joint_id
][
1
]
/
feat_stride
[
1
]
# Check that any part of the gaussian is in-bounds
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
...
...
@@ -723,3 +786,74 @@ class ToHeatmapsTopDown_DARK(object):
del
records
[
'joints'
],
records
[
'joints_vis'
]
return
records
@
register_keypointop
class
ToHeatmapsTopDown_UDP
(
object
):
"""to generate the gaussian heatmaps of keypoint for heatmap loss.
ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing
for Human Pose Estimation (CVPR 2020).
Args:
hmsize (list): [w, h] output heatmap's size
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the heatmaps used to heatmaploss
"""
def
__init__
(
self
,
hmsize
,
sigma
):
super
(
ToHeatmapsTopDown_UDP
,
self
).
__init__
()
self
.
hmsize
=
np
.
array
(
hmsize
)
self
.
sigma
=
sigma
def
__call__
(
self
,
records
):
joints
=
records
[
'joints'
]
joints_vis
=
records
[
'joints_vis'
]
num_joints
=
joints
.
shape
[
0
]
image_size
=
np
.
array
(
[
records
[
'image'
].
shape
[
1
],
records
[
'image'
].
shape
[
0
]])
target_weight
=
np
.
ones
((
num_joints
,
1
),
dtype
=
np
.
float32
)
target_weight
[:,
0
]
=
joints_vis
[:,
0
]
target
=
np
.
zeros
(
(
num_joints
,
self
.
hmsize
[
1
],
self
.
hmsize
[
0
]),
dtype
=
np
.
float32
)
tmp_size
=
self
.
sigma
*
3
size
=
2
*
tmp_size
+
1
x
=
np
.
arange
(
0
,
size
,
1
,
np
.
float32
)
y
=
x
[:,
None
]
feat_stride
=
(
image_size
-
1.0
)
/
(
self
.
hmsize
-
1.0
)
for
joint_id
in
range
(
num_joints
):
mu_x
=
int
(
joints
[
joint_id
][
0
]
/
feat_stride
[
0
]
+
0.5
)
mu_y
=
int
(
joints
[
joint_id
][
1
]
/
feat_stride
[
1
]
+
0.5
)
# Check that any part of the gaussian is in-bounds
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
if
ul
[
0
]
>=
self
.
hmsize
[
0
]
or
ul
[
1
]
>=
self
.
hmsize
[
1
]
or
br
[
0
]
<
0
or
br
[
1
]
<
0
:
# If not, just return the image as is
target_weight
[
joint_id
]
=
0
continue
mu_x_ac
=
joints
[
joint_id
][
0
]
/
feat_stride
[
0
]
mu_y_ac
=
joints
[
joint_id
][
1
]
/
feat_stride
[
1
]
x0
=
y0
=
size
//
2
x0
+=
mu_x_ac
-
mu_x
y0
+=
mu_y_ac
-
mu_y
g
=
np
.
exp
(
-
((
x
-
x0
)
**
2
+
(
y
-
y0
)
**
2
)
/
(
2
*
self
.
sigma
**
2
))
# Usable gaussian range
g_x
=
max
(
0
,
-
ul
[
0
]),
min
(
br
[
0
],
self
.
hmsize
[
0
])
-
ul
[
0
]
g_y
=
max
(
0
,
-
ul
[
1
]),
min
(
br
[
1
],
self
.
hmsize
[
1
])
-
ul
[
1
]
# Image range
img_x
=
max
(
0
,
ul
[
0
]),
min
(
br
[
0
],
self
.
hmsize
[
0
])
img_y
=
max
(
0
,
ul
[
1
]),
min
(
br
[
1
],
self
.
hmsize
[
1
])
v
=
target_weight
[
joint_id
]
if
v
>
0.5
:
target
[
joint_id
][
img_y
[
0
]:
img_y
[
1
],
img_x
[
0
]:
img_x
[
1
]]
=
g
[
g_y
[
0
]:
g_y
[
1
],
g_x
[
0
]:
g_x
[
1
]]
records
[
'target'
]
=
target
records
[
'target_weight'
]
=
target_weight
del
records
[
'joints'
],
records
[
'joints_vis'
]
return
records
ppdet/modeling/keypoint_utils.py
浏览文件 @
87b1fccd
...
...
@@ -95,6 +95,37 @@ def get_affine_transform(center,
return
trans
def
get_warp_matrix
(
theta
,
size_input
,
size_dst
,
size_target
):
"""Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta
=
np
.
deg2rad
(
theta
)
matrix
=
np
.
zeros
((
2
,
3
),
dtype
=
np
.
float32
)
scale_x
=
size_dst
[
0
]
/
size_target
[
0
]
scale_y
=
size_dst
[
1
]
/
size_target
[
1
]
matrix
[
0
,
0
]
=
np
.
cos
(
theta
)
*
scale_x
matrix
[
0
,
1
]
=
-
np
.
sin
(
theta
)
*
scale_x
matrix
[
0
,
2
]
=
scale_x
*
(
-
0.5
*
size_input
[
0
]
*
np
.
cos
(
theta
)
+
0.5
*
size_input
[
1
]
*
np
.
sin
(
theta
)
+
0.5
*
size_target
[
0
])
matrix
[
1
,
0
]
=
np
.
sin
(
theta
)
*
scale_y
matrix
[
1
,
1
]
=
np
.
cos
(
theta
)
*
scale_y
matrix
[
1
,
2
]
=
scale_y
*
(
-
0.5
*
size_input
[
0
]
*
np
.
sin
(
theta
)
-
0.5
*
size_input
[
1
]
*
np
.
cos
(
theta
)
+
0.5
*
size_target
[
1
])
return
matrix
def
_get_3rd_point
(
a
,
b
):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录