Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8055e86e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8055e86e
编写于
6月 12, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
6月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
split weights and PaddleLite model in configs/mobile/README (#935)
* split weights and PaddleLite model in configs/mobile/README
上级
e77baea4
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
18 addition
and
26 deletion
+18
-26
configs/mobile/README.md
configs/mobile/README.md
+9
-13
configs/mobile/README_en.md
configs/mobile/README_en.md
+9
-13
未找到文件。
configs/mobile/README.md
浏览文件 @
8055e86e
...
...
@@ -7,23 +7,19 @@
PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构:
| 骨干网络 | 结构
| 输入大小 | 图片/gpu
<sup>
1
</sup>
| 学习率策略 | Box AP | 下载
<sup>
2
</sup>
|
|
--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
| 骨干网络 | 结构
| 输入大小 | 图片/gpu
<sup>
1
</sup>
| 学习率策略 | Box AP | 下载 | PaddleLite模型下载
|
|
:----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :--- | :-----------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_small.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_large.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
pdparams
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
2
</sup>
| 320 | 8 | - | 24.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar
)
|
**注意**
:
-
<a
name=
"gpu"
>
[1]
</a>
模型统一使用8卡训练.
-
<a
name=
"tarball"
>
[2]
</a>
压缩包包括下列文件
-
模型权重文件 (
`.pdparams`
or
`.tar`
)
-
inference model 文件 (
`__model__`
and
`__params__`
)
-
Paddle-Lite 模型文件 (
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
参考下面关于YOLO剪裁的说明
-
<a
name=
"prune"
>
[2]
</a>
参考下面关于YOLO剪裁的说明
## 评测结果
...
...
configs/mobile/README_en.md
浏览文件 @
8055e86e
...
...
@@ -7,23 +7,19 @@ English | [简体中文](README.md)
This directory contains models optimized for mobile applications, at present the following models included:
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
<sup>
2
</sup>
|
|
--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
| PaddleLite Model Download
|
|
:----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :------- | :------------------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_small.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_large.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
pdparams
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
2
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar
)
|
**Notes**
:
-
<a
name=
"gpu"
>
[1]
</a>
All models are trained on 8 GPUs.
-
<a
name=
"tarball"
>
[2]
</a>
Each tarball contains the following files
-
model weight file (
`.pdparams`
or
`.tar`
)
-
inference model files (
`__model__`
and
`__params__`
)
-
Paddle-Lite model file (
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
See the note section on how YOLO head is pruned
-
<a
name=
"prune"
>
[2]
</a>
See the note section on how YOLO head is pruned
## Benchmarks Results
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录