diff --git a/configs/mobile/README.md b/configs/mobile/README.md
index d498b50f17cc4b0abcda5ddac41188eebb204964..bc155b781cf34944d054011e6b027089724f83f8 100755
--- a/configs/mobile/README.md
+++ b/configs/mobile/README.md
@@ -7,23 +7,19 @@
PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构:
-| 骨干网络 | 结构 | 输入大小 | 图片/gpu 1 | 学习率策略 | Box AP | 下载 2 |
-|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
-| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz) |
-| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz) |
-| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz) |
-| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz) |
-| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz) |
-| MobileNetV3 Large | YOLOv3 Prune 3 | 320 | 8 | - | 24.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz) |
+| 骨干网络 | 结构 | 输入大小 | 图片/gpu 1 | 学习率策略 | Box AP | 下载 | PaddleLite模型下载 |
+| :----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :--- | :----------------- |
+| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar) |
+| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar) |
+| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar) |
+| MobileNetV3 Large | YOLOv3 Prune 2 | 320 | 8 | - | 24.6 | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams) | [链接](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar) |
**注意**:
- [1] 模型统一使用8卡训练.
-- [2] 压缩包包括下列文件
- - 模型权重文件 (`.pdparams` or `.tar`)
- - inference model 文件 (`__model__` and `__params__`)
- - Paddle-Lite 模型文件 (`.nb`)
-- [3] 参考下面关于YOLO剪裁的说明
+- [2] 参考下面关于YOLO剪裁的说明
## 评测结果
diff --git a/configs/mobile/README_en.md b/configs/mobile/README_en.md
index b2a6f9dd5a1c110967750f80a5c9f48b5c0e023e..2d6d3a1b80e74abd8eb81245bfa9da09313ac956 100755
--- a/configs/mobile/README_en.md
+++ b/configs/mobile/README_en.md
@@ -7,23 +7,19 @@ English | [简体中文](README.md)
This directory contains models optimized for mobile applications, at present the following models included:
-| Backbone | Architecture | Input | Image/gpu 1 | Lr schd | Box AP | Download 2 |
-|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
-| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz) |
-| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz) |
-| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz) |
-| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz) |
-| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz) |
-| MobileNetV3 Large | YOLOv3 Prune 3 | 320 | 8 | - | 24.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz) |
+| Backbone | Architecture | Input | Image/gpu 1 | Lr schd | Box AP | Download | PaddleLite Model Download |
+| :----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :------- | :------------------------ |
+| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar) |
+| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar) |
+| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar) |
+| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar) |
+| MobileNetV3 Large | YOLOv3 Prune 2 | 320 | 8 | - | 24.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams) | [Link](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar) |
**Notes**:
- [1] All models are trained on 8 GPUs.
-- [2] Each tarball contains the following files
- - model weight file (`.pdparams` or `.tar`)
- - inference model files (`__model__` and `__params__`)
- - Paddle-Lite model file (`.nb`)
-- [3] See the note section on how YOLO head is pruned
+- [2] See the note section on how YOLO head is pruned
## Benchmarks Results