Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
495861f5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
495861f5
编写于
3月 02, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add v2 demo to seqtoseq, fix __dfs_travel__ for v2 layers
上级
061e743c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
202 addition
and
2 deletion
+202
-2
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+106
-0
demo/seqToseq/seqToseq_net_v2.py
demo/seqToseq/seqToseq_net_v2.py
+90
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+1
-1
python/paddle/v2/topology.py
python/paddle/v2/topology.py
+5
-1
未找到文件。
demo/seqToseq/api_train_v2.py
0 → 100644
浏览文件 @
495861f5
import
os
import
paddle.v2
as
paddle
from
seqToseq_net_v2
import
seqToseq_net_v2
### Data Definiation
data_dir
=
"./data/pre-wmt14"
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
'src.dict'
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
'trg.dict'
)
source_dict_dim
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
target_dict_dim
=
len
(
open
(
trg_lang_dict
,
"r"
).
readlines
())
def
read_to_dict
(
dict_path
):
with
open
(
dict_path
,
"r"
)
as
fin
:
out_dict
=
{
line
.
strip
():
line_count
for
line_count
,
line
in
enumerate
(
fin
)
}
return
out_dict
src_dict
=
read_to_dict
(
src_lang_dict
)
trg_dict
=
read_to_dict
(
trg_lang_dict
)
train_list
=
os
.
path
.
join
(
data_dir
,
'train.list'
)
test_list
=
os
.
path
.
join
(
data_dir
,
'test.list'
)
UNK_IDX
=
2
START
=
"<s>"
END
=
"<e>"
def
_get_ids
(
s
,
dictionary
):
words
=
s
.
strip
().
split
()
return
[
dictionary
[
START
]]
+
\
[
dictionary
.
get
(
w
,
UNK_IDX
)
for
w
in
words
]
+
\
[
dictionary
[
END
]]
def
train_reader
(
file_name
):
def
reader
():
with
open
(
file_name
,
'r'
)
as
f
:
for
line_count
,
line
in
enumerate
(
f
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
if
len
(
line_split
)
!=
2
:
continue
src_seq
=
line_split
[
0
]
# one source sequence
src_ids
=
_get_ids
(
src_seq
,
src_dict
)
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
return
reader
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# reader = train_reader("data/pre-wmt14/train/train")
# define network topology
cost
=
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
optimizer
=
paddle
.
optimizer
.
Adam
(
batch_size
=
50
,
learning_rate
=
5e-4
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
reader_dict
=
{
'source_language_word'
:
0
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
}
trn_reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
train_reader
(
"data/pre-wmt14/train/train"
),
buf_size
=
8192
),
batch_size
=
10
)
trainer
.
train
(
reader
=
trn_reader
,
event_handler
=
event_handler
,
num_passes
=
10000
,
reader_dict
=
reader_dict
)
if
__name__
==
'__main__'
:
main
()
demo/seqToseq/seqToseq_net_v2.py
0 → 100644
浏览文件 @
495861f5
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.networks
as
networks
def
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
layer
.
data
(
name
=
'source_language_word'
,
type
=
data_type
.
dense_vector
(
source_dict_dim
))
src_embedding
=
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
layer
.
first_seq
(
input
=
src_backward
)
with
layer
.
mixed
(
size
=
decoder_size
,
act
=
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
activation
.
Softmax
())
as
out
:
out
+=
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
layer
.
embedding
(
input
=
layer
.
data
(
name
=
'target_language_word'
,
type
=
data_type
.
dense_vector
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
data_type
.
dense_vector
(
target_dict_dim
))
cost
=
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
python/paddle/v2/layer.py
浏览文件 @
495861f5
...
...
@@ -262,7 +262,7 @@ class StaticInputV2(object):
self
.
input
=
input
self
.
is_seq
=
is_seq
self
.
size
=
size
# TODO(
qiaolongfei): add size
# TODO(
add size check)
# assert input.size is not None or size is not None
...
...
python/paddle/v2/topology.py
浏览文件 @
495861f5
...
...
@@ -17,6 +17,7 @@ import collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
import
layer
as
v2_layer
from
layer
import
WithExtraParent
__all__
=
[
'Topology'
]
...
...
@@ -40,7 +41,10 @@ def __bfs_travel__(callback, *layers):
__break__
=
callback
(
each_layer
)
if
__break__
:
return
__bfs_travel__
(
callback
,
*
each_layer
.
__parent_layers__
.
values
())
__layers__
=
each_layer
.
__parent_layers__
.
values
()
if
isinstance
(
each_layer
,
WithExtraParent
):
__layers__
=
__layers__
+
each_layer
.
extra_parent
()
__bfs_travel__
(
callback
,
*
__layers__
)
class
Topology
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录