提交 061e743c 编写于 作者: J jacquesqiao 提交者: GitHub

Merge pull request #1441 from jacquesqiao/rnn

support rnn
......@@ -20,6 +20,7 @@ import event
import data_type
import topology
import data_feeder
import networks
from . import dataset
from . import reader
import attr
......
......@@ -22,6 +22,7 @@ class Layer(object):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__contex__ = {}
self.__parent_layers__ = parent_layers
def to_proto(self, context):
......@@ -39,16 +40,38 @@ class Layer(object):
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
if self.context_name() is None:
return self.to_proto_impl(**kwargs)
elif self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(**kwargs)
self.__contex__ = context
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def context_name(self):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return self.name
def use_context_name(self):
return False
def calculate_size(self):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return self.__contex__[self.context_name()].size
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name:
......
......@@ -65,19 +65,24 @@ to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import collections
import inspect
from config_base import Layer, __convert_to_v2__
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import \
wrap_bias_attr_default
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.layers import layer_support
from paddle.trainer.config_parser import \
RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
RecurrentLayerGroupEnd, model_type
import data_type
import activation
import data_type
__all__ = ['parse_network', 'data']
......@@ -130,6 +135,137 @@ class DataLayerV2(Layer):
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class WithExtraParent(Layer):
def extra_parent(self):
return self.__extra_parent__
def __init__(self, name=None, parent_layers=None):
self.__extra_parent__ = []
super(WithExtraParent, self).__init__(
name=name, parent_layers=parent_layers)
def append_extra_parent(self, parent):
self.__extra_parent__.append(parent)
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for p in self.__extra_parent__:
p.to_proto(context=context)
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.context_name() is None:
return self.to_proto_impl(context=context, **kwargs)
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(
context=context, **kwargs)
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
class MemoryV2(WithExtraParent):
def __init__(self, name, **kwargs):
self.name = name
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
self.__kwargs__ = kwargs
self.__boot_layer_name__ = None
if 'boot_layer' in kwargs:
begin_of_current_rnn = []
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
# function inside step.
st = inspect.stack()
for i in xrange(len(st)):
locs = inspect.stack()[i][0].f_locals
keys = locs.keys()
for key in keys:
val = locs[key]
if isinstance(val, RecurrentLayerInput):
begin_of_current_rnn.append(val)
elif isinstance(val, collections.Sequence):
for v in val:
if isinstance(v, RecurrentLayerInput):
begin_of_current_rnn.append(v)
if begin_of_current_rnn:
break
assert begin_of_current_rnn is not None
for extra in begin_of_current_rnn:
self.append_extra_parent(extra)
assert isinstance(extra, WithExtraParent)
extra.append_extra_parent(kwargs['boot_layer'])
self.__boot_layer_name__ = kwargs['boot_layer'].name
def to_proto_impl(self, context, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
if self.__boot_layer_name__ is not None:
args['boot_layer'] = context[self.__boot_layer_name__]
size = args.get('size', None)
if size is not None:
if callable(size):
real_size = size()
else:
real_size = size
args['size'] = real_size
return conf_helps.memory(name=self.name, **args)
def context_name(self):
return self.name + "#memory"
def use_context_name(self):
"""
memory layer will have the same name with some layer
:return:
"""
return True
class LayerOutputV2(Layer):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def __init__(self, layer_output):
assert isinstance(layer_output, conf_helps.LayerOutput)
self.layer_output = layer_output
super(LayerOutputV2, self).__init__(
name=layer_output.name, parent_layers=dict())
def to_proto_impl(self):
return self.layer_output
class StaticInputV2(object):
def __init__(self, input, is_seq=False, size=None):
assert isinstance(input, LayerV2)
self.name = input.name
self.input = input
self.is_seq = is_seq
self.size = size
# TODO(qiaolongfei): add size
# assert input.size is not None or size is not None
class MixedLayerV2(Layer):
"""
This class is use to support `with` grammar. If not, the following code
......@@ -161,7 +297,6 @@ class MixedLayerV2(Layer):
other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr
parent_layers = {"input": self.__inputs__}
super(MixedLayerV2, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
......@@ -171,7 +306,7 @@ class MixedLayerV2(Layer):
self.__inputs__.append(other)
return self
else:
raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()
raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self):
assert len(self.__inputs__) == 0
......@@ -186,6 +321,13 @@ class MixedLayerV2(Layer):
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
size = args.get('size', None)
if size is not None:
if callable(size):
real_size = size()
else:
real_size = size
args['size'] = real_size
return getattr(conf_helps, self.__method_name__)(**args)
......@@ -202,14 +344,51 @@ def mixed(size=0,
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
class RecurrentLayerInput(WithExtraParent):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerInput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".begin"
def to_proto_impl(self, context, **kwargs):
model_type('recurrent_nn')
RecurrentLayerGroupWithoutOutLinksBegin(
name=self.__recurrent_name__,
in_links=map(lambda x: x.name, self.__parents__))
return self
class RecurrentLayerOutput(Layer):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerOutput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".end"
def to_proto_impl(self, **kwargs):
for l in self.__parents__:
RecurrentLayerGroupSetOutLink(l.name)
RecurrentLayerGroupEnd(name=self.__recurrent_name__)
LayerV2 = Layer
data = DataLayerV2
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
memory = MemoryV2
def __layer_name_mapping__(inname):
if inname in ['data_layer', 'memory', 'mixed_layer']:
if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
# Do Not handle these layers
return
elif inname == 'maxid_layer':
......@@ -231,8 +410,10 @@ def __layer_name_mapping__(inname):
def __layer_name_mapping_parent_names__(inname):
all_args = getattr(conf_helps, inname).argspec.args
return filter(
lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
'weights', 'vectors', 'weight', 'score', 'left', 'right'],
lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
'expand_as',
'weights', 'vectors', 'weight', 'score', 'left',
'right', 'output_mem'],
all_args)
......@@ -267,3 +448,54 @@ operator_list = [
for op in operator_list:
globals()[op[0]] = __convert_to_v2__(
op[0], parent_names=op[1], is_default_name=False)
@wrap_name_default()
def recurrent_group(step, input, name=None):
if not isinstance(input, collections.Sequence):
input = [input]
non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
input)
actual_input = [
RecurrentLayerInput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_inputs': non_static_inputs})
for i in xrange(len(non_static_inputs))
]
def __real_step__(*args):
rnn_input = list(args)
static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
for static_input in static_inputs:
mem_name = "__%s_memory__" % static_input.input.name
mem = memory(
name=mem_name,
is_seq=static_input.is_seq,
size=static_input.input.calculate_size,
boot_layer=static_input.input)
with mixed(
name=mem_name,
size=static_input.input.calculate_size,
act=activation.Identity()) as mix:
mix += identity_projection(input=mem)
rnn_input.insert(input.index(static_input), mix)
return step(*rnn_input)
actual_output = __real_step__(*actual_input)
if not isinstance(actual_output, collections.Sequence):
actual_output = [actual_output]
retv = [
RecurrentLayerOutput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_outputs': actual_output})
for i in xrange(len(actual_output))
]
if len(retv) == 1:
return retv[0]
else:
return retv
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
add_test(NAME test_v2_rnn_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_rnn_layer.py)
add_test(NAME topology_test
add_test(NAME test_topology
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import unittest
import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network
class RNNTest(unittest.TestCase):
def test_simple_rnn(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
def parse_old_rnn():
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
return str(parse_network(test))
def parse_new_rnn():
def new_step(y):
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
data = layer.data(
name="word", type=data_type.integer_value(dict_dim))
embd = layer.embedding(input=data, size=word_dim)
rnn_layer = layer.recurrent_group(
name="rnn", step=new_step, input=embd)
return str(layer.parse_network(rnn_layer))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
def test_sequence_rnn_multi_input(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
def parse_old_rnn():
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
label = conf_helps.data_layer(name="label", size=label_dim)
emb = conf_helps.embedding_layer(input=data, size=word_dim)
boot_layer = conf_helps.data_layer(name="boot", size=10)
boot_layer = conf_helps.fc_layer(
name='boot_fc', input=boot_layer, size=10)
def step(y, wid):
z = conf_helps.embedding_layer(input=wid, size=word_dim)
mem = conf_helps.memory(
name="rnn_state",
size=hidden_dim,
boot_layer=boot_layer)
out = conf_helps.fc_layer(
input=[y, z, mem],
size=hidden_dim,
act=conf_helps.TanhActivation(),
bias_attr=True,
name="rnn_state")
return out
out = conf_helps.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = conf_helps.last_seq(input=out)
prob = conf_helps.fc_layer(
size=label_dim,
input=rep,
act=conf_helps.SoftmaxActivation(),
bias_attr=True)
conf_helps.outputs(
conf_helps.classification_cost(
input=prob, label=label))
return str(parse_network(test))
def parse_new_rnn():
data = layer.data(
name="word", type=data_type.dense_vector(dict_dim))
label = layer.data(
name="label", type=data_type.dense_vector(label_dim))
emb = layer.embedding(input=data, size=word_dim)
boot_layer = layer.data(
name="boot", type=data_type.dense_vector(10))
boot_layer = layer.fc(name='boot_fc', input=boot_layer, size=10)
def step(y, wid):
z = layer.embedding(input=wid, size=word_dim)
mem = layer.memory(
name="rnn_state", size=hidden_dim, boot_layer=boot_layer)
out = layer.fc(input=[y, z, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
out = layer.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = layer.last_seq(input=out)
prob = layer.fc(size=label_dim,
input=rep,
act=activation.Softmax(),
bias_attr=True)
cost = layer.classification_cost(input=prob, label=label)
return str(layer.parse_network(cost))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册