Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
396a519b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
396a519b
编写于
10月 15, 2021
作者:
J
JYChen
提交者:
GitHub
10月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add WiderNaive-18 base model (#4312)
* fix naive-lite-hrnet backbone * add WiderNaive-18 model
上级
dbfc8c91
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
148 addition
and
7 deletion
+148
-7
configs/keypoint/README.md
configs/keypoint/README.md
+1
-0
configs/keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
...keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
+140
-0
ppdet/modeling/backbones/lite_hrnet.py
ppdet/modeling/backbones/lite_hrnet.py
+7
-7
未找到文件。
configs/keypoint/README.md
浏览文件 @
396a519b
...
@@ -23,6 +23,7 @@ COCO数据集
...
@@ -23,6 +23,7 @@ COCO数据集
| HRNet-w32 | 384x288 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_384x288.yml
)
|
| HRNet-w32 | 384x288 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_384x288.yml
)
|
| HRNet-w32+DarkPose | 256x192 | 78.0 |
[
dark_hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_256x192.yml
)
|
| HRNet-w32+DarkPose | 256x192 | 78.0 |
[
dark_hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_256x192.yml
)
|
| HRNet-w32+DarkPose | 384x288 | 78.3 |
[
dark_hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_384x288.yml
)
|
| HRNet-w32+DarkPose | 384x288 | 78.3 |
[
dark_hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_384x288.yml
)
|
| WiderNaiveHRNet-18 | 256x192 | 67.6(+DARK 68.4) |
[
wider_naive_hrnet_18_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
)
|
| LiteHRNet-18 | 256x192 | 66.5 |
[
lite_hrnet_18_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_256x192_coco.yml
)
|
| LiteHRNet-18 | 256x192 | 66.5 |
[
lite_hrnet_18_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_256x192_coco.yml
)
|
| LiteHRNet-18 | 384x288 | 69.7 |
[
lite_hrnet_18_384x288_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_384x288_coco.yml
)
|
| LiteHRNet-18 | 384x288 | 69.7 |
[
lite_hrnet_18_384x288_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_384x288_coco.yml
)
|
| LiteHRNet-30 | 256x192 | 69.4 |
[
lite_hrnet_30_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_30_256x192_coco.yml
)
|
| LiteHRNet-30 | 256x192 | 69.4 |
[
lite_hrnet_30_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_30_256x192_coco.yml
)
|
...
...
configs/keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
0 → 100644
浏览文件 @
396a519b
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/wider_naive_hrnet_18_256x192_coco/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
192
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
48
,
64
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
TopDownHRNet
:
backbone
:
LiteHRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
40
loss
:
KeyPointMSELoss
use_dark
:
false
LiteHRNet
:
network_type
:
wider_naive
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
loss_scale
:
1.0
#####optimizer
LearningRate
:
base_lr
:
0.002
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
500
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.25
rot
:
30
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
TestReader
:
inputs_def
:
image_shape
:
[
3
,
*train_height
,
*train_width
]
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
ppdet/modeling/backbones/lite_hrnet.py
浏览文件 @
396a519b
...
@@ -271,7 +271,7 @@ class ShuffleUnit(nn.Layer):
...
@@ -271,7 +271,7 @@ class ShuffleUnit(nn.Layer):
norm_decay
=
0.
):
norm_decay
=
0.
):
super
(
ShuffleUnit
,
self
).
__init__
()
super
(
ShuffleUnit
,
self
).
__init__
()
branch_channel
=
out_channel
//
2
branch_channel
=
out_channel
//
2
s
tride
=
self
.
stride
s
elf
.
stride
=
stride
if
self
.
stride
==
1
:
if
self
.
stride
==
1
:
assert
(
assert
(
in_channel
==
branch_channel
*
2
,
in_channel
==
branch_channel
*
2
,
...
@@ -544,11 +544,11 @@ class LiteHRNetModule(nn.Layer):
...
@@ -544,11 +544,11 @@ class LiteHRNetModule(nn.Layer):
norm_decay
=
norm_decay
))
norm_decay
=
norm_decay
))
return
nn
.
Sequential
(
*
layers
)
return
nn
.
Sequential
(
*
layers
)
def
_make_naive_branchs
(
self
,
def
_make_naive_branch
e
s
(
self
,
num_branches
,
num_branches
,
num_blocks
,
num_blocks
,
freeze_norm
=
False
,
freeze_norm
=
False
,
norm_decay
=
0.
):
norm_decay
=
0.
):
branches
=
[]
branches
=
[]
for
branch_idx
in
range
(
num_branches
):
for
branch_idx
in
range
(
num_branches
):
layers
=
[]
layers
=
[]
...
@@ -644,7 +644,7 @@ class LiteHRNetModule(nn.Layer):
...
@@ -644,7 +644,7 @@ class LiteHRNetModule(nn.Layer):
out
=
self
.
layers
(
x
)
out
=
self
.
layers
(
x
)
elif
self
.
module_type
==
'NAIVE'
:
elif
self
.
module_type
==
'NAIVE'
:
for
i
in
range
(
self
.
num_branches
):
for
i
in
range
(
self
.
num_branches
):
x
[
i
]
=
self
.
layers
(
x
[
i
])
x
[
i
]
=
self
.
layers
[
i
]
(
x
[
i
])
out
=
x
out
=
x
if
self
.
with_fuse
:
if
self
.
with_fuse
:
out_fuse
=
[]
out_fuse
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录