未验证 提交 396a519b 编写于 作者: J JYChen 提交者: GitHub

add WiderNaive-18 base model (#4312)

* fix naive-lite-hrnet backbone

* add WiderNaive-18 model
上级 dbfc8c91
......@@ -23,6 +23,7 @@ COCO数据集
| HRNet-w32 | 384x288 | 77.8 | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml) |
| HRNet-w32+DarkPose | 256x192 | 78.0 | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml) |
| HRNet-w32+DarkPose | 384x288 | 78.3 | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml) |
| WiderNaiveHRNet-18 | 256x192 | 67.6(+DARK 68.4) | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml) |
| LiteHRNet-18 | 256x192 | 66.5 | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml) |
| LiteHRNet-18 | 384x288 | 69.7 | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml) |
| LiteHRNet-30 | 256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
......
use_gpu: true
log_iter: 5
save_dir: output
snapshot_epoch: 10
weights: output/wider_naive_hrnet_18_256x192_coco/model_final
epoch: 210
num_joints: &num_joints 17
pixel_std: &pixel_std 200
metric: KeyPointTopDownCOCOEval
num_classes: 1
train_height: &train_height 256
train_width: &train_width 192
trainsize: &trainsize [*train_width, *train_height]
hmsize: &hmsize [48, 64]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
#####model
architecture: TopDownHRNet
TopDownHRNet:
backbone: LiteHRNet
post_process: HRNetPostProcess
flip_perm: *flip_perm
num_joints: *num_joints
width: &width 40
loss: KeyPointMSELoss
use_dark: false
LiteHRNet:
network_type: wider_naive
freeze_at: -1
freeze_norm: false
return_idx: [0]
KeyPointMSELoss:
use_target_weight: true
loss_scale: 1.0
#####optimizer
LearningRate:
base_lr: 0.002
schedulers:
- !PiecewiseDecay
milestones: [170, 200]
gamma: 0.1
- !LinearWarmup
start_factor: 0.001
steps: 500
OptimizerBuilder:
optimizer:
type: Adam
regularizer:
factor: 0.0
type: L2
#####data
TrainDataset:
!KeypointTopDownCocoDataset
image_dir: train2017
anno_path: annotations/person_keypoints_train2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
EvalDataset:
!KeypointTopDownCocoDataset
image_dir: val2017
anno_path: annotations/person_keypoints_val2017.json
dataset_dir: dataset/coco
num_joints: *num_joints
trainsize: *trainsize
pixel_std: *pixel_std
use_gt_bbox: True
image_thre: 0.0
TestDataset:
!ImageFolder
anno_path: dataset/coco/keypoint_imagelist.txt
worker_num: 2
global_mean: &global_mean [0.485, 0.456, 0.406]
global_std: &global_std [0.229, 0.224, 0.225]
TrainReader:
sample_transforms:
- RandomFlipHalfBodyTransform:
scale: 0.25
rot: 30
num_joints_half_body: 8
prob_half_body: 0.3
pixel_std: *pixel_std
trainsize: *trainsize
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
flip_pairs: *flip_perm
- TopDownAffine:
trainsize: *trainsize
- ToHeatmapsTopDown:
hmsize: *hmsize
sigma: 2
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 64
shuffle: true
drop_last: false
EvalReader:
sample_transforms:
- TopDownAffine:
trainsize: *trainsize
batch_transforms:
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 16
TestReader:
inputs_def:
image_shape: [3, *train_height, *train_width]
sample_transforms:
- Decode: {}
- TopDownEvalAffine:
trainsize: *trainsize
- NormalizeImage:
mean: *global_mean
std: *global_std
is_scale: true
- Permute: {}
batch_size: 1
......@@ -271,7 +271,7 @@ class ShuffleUnit(nn.Layer):
norm_decay=0.):
super(ShuffleUnit, self).__init__()
branch_channel = out_channel // 2
stride = self.stride
self.stride = stride
if self.stride == 1:
assert (
in_channel == branch_channel * 2,
......@@ -544,11 +544,11 @@ class LiteHRNetModule(nn.Layer):
norm_decay=norm_decay))
return nn.Sequential(*layers)
def _make_naive_branchs(self,
num_branches,
num_blocks,
freeze_norm=False,
norm_decay=0.):
def _make_naive_branches(self,
num_branches,
num_blocks,
freeze_norm=False,
norm_decay=0.):
branches = []
for branch_idx in range(num_branches):
layers = []
......@@ -644,7 +644,7 @@ class LiteHRNetModule(nn.Layer):
out = self.layers(x)
elif self.module_type == 'NAIVE':
for i in range(self.num_branches):
x[i] = self.layers(x[i])
x[i] = self.layers[i](x[i])
out = x
if self.with_fuse:
out_fuse = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册