Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8329a1f1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8329a1f1
编写于
10月 14, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sparse update momentum. test=develop
上级
ce248a15
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
263 addition
and
42 deletion
+263
-42
paddle/fluid/operators/momentum_op.cc
paddle/fluid/operators/momentum_op.cc
+24
-5
paddle/fluid/operators/momentum_op.cu
paddle/fluid/operators/momentum_op.cu
+77
-17
paddle/fluid/operators/momentum_op.h
paddle/fluid/operators/momentum_op.h
+62
-20
python/paddle/fluid/tests/unittests/test_momentum_op.py
python/paddle/fluid/tests/unittests/test_momentum_op.py
+100
-0
未找到文件。
paddle/fluid/operators/momentum_op.cc
浏览文件 @
8329a1f1
...
...
@@ -24,7 +24,7 @@ class MomentumOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(param) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
...
...
@@ -53,13 +53,30 @@ class MomentumOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"VelocityOut"
,
param_dim
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Param"
)
->
type
());
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
class
MomentumOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
};
class
MomentumOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -110,6 +127,8 @@ $$
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
momentum
,
ops
::
MomentumOp
,
ops
::
MomentumOpMaker
);
REGISTER_OPERATOR
(
momentum
,
ops
::
MomentumOp
,
ops
::
MomentumOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
MomentumOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
momentum
,
ops
::
MomentumOpKernel
<
float
>
,
ops
::
MomentumOpKernel
<
double
>
);
paddle/fluid/operators/momentum_op.cu
浏览文件 @
8329a1f1
...
...
@@ -42,32 +42,92 @@ __global__ void MomentumKernel(const T* p, const T* g, const T* v,
}
}
template
<
typename
T
>
__global__
void
SparseMomentumKernel
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
lr
,
const
T
mu
,
const
int64_t
*
grad_rows
,
const
size_t
grad_row_numel
,
const
size_t
grad_row_size
,
const
T
use_nesterov
,
T
*
p_out
,
T
*
v_out
)
{
for
(
int
i
=
blockIdx
.
x
;
i
<
grad_row_size
;
i
+=
gridDim
.
x
)
{
for
(
int
j
=
threadIdx
.
x
;
j
<
grad_row_numel
;
j
+=
blockDim
.
x
)
{
size_t
p_i
=
grad_rows
[
i
]
*
grad_row_numel
+
j
;
size_t
g_i
=
i
*
grad_row_numel
+
j
;
v_out
[
g_i
]
=
v
[
g_i
]
*
mu
+
g
[
g_i
];
if
(
use_nesterov
)
{
p_out
[
p_i
]
=
p
[
p_i
]
-
(
g
[
g_i
]
+
v_out
[
g_i
]
*
mu
)
*
lr
[
0
];
}
else
{
p_out
[
p_i
]
=
p
[
p_i
]
-
v_out
[
g_i
]
*
lr
[
0
];
}
}
}
}
template
<
typename
T
>
class
MomentumOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
bool
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
velocity_var
=
ctx
.
InputVar
(
"Velocity"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
T
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
v_out
=
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
LoDTensor
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
T
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
v_out
=
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
p
=
param
->
data
<
T
>
();
auto
*
v
=
velocity
->
data
<
T
>
();
auto
*
g
=
grad
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
bool
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
const
int
kThreadPerBlock
=
256
;
int
grid
=
(
param
->
numel
()
+
kThreadPerBlock
-
1
)
/
kThreadPerBlock
;
MomentumKernel
<
T
><<<
grid
,
kThreadPerBlock
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
param
->
numel
(),
use_nesterov
,
p_out
,
v_out
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// sparse update embedding with selectedrows
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
SelectedRows
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"VelocityOut"
);
auto
*
p
=
param
->
data
<
T
>
();
auto
*
v
=
velocity
->
data
<
T
>
();
auto
*
g
=
grad
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
// sparse update maybe empty.
if
(
grad
->
rows
().
size
()
==
0
)
{
return
;
}
PADDLE_ENFORCE
(
grad
->
height
()
==
velocity
->
height
(),
"Unmatched gradient and velocity."
);
auto
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
v_out
=
velocity_out
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
p
=
param
->
data
<
T
>
();
auto
*
g
=
grad
->
value
().
data
<
T
>
();
auto
*
v
=
velocity
->
value
().
data
<
T
>
();
size_t
grad_row_numel
=
grad
->
value
().
numel
()
/
grad
->
rows
().
size
();
size_t
grad_row_size
=
grad
->
rows
().
size
();
framework
::
Vector
<
int64_t
>
rows
(
grad
->
rows
());
int
block
=
512
;
int
grid
=
(
param
->
numel
()
+
block
-
1
)
/
block
;
MomentumKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
param
->
numel
(),
use_nesterov
,
p_out
,
v_out
);
const
int
kThreadPerBlock
=
256
;
int
grid
=
(
param
->
numel
()
+
kThreadPerBlock
-
1
)
/
kThreadPerBlock
;
SparseMomentumKernel
<
T
><<<
grid
,
kThreadPerBlock
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
rows
.
CUDAData
(
ctx
.
GetPlace
()),
grad_row_numel
,
grad
->
rows
().
size
(),
use_nesterov
,
p_out
,
v_out
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
};
...
...
paddle/fluid/operators/momentum_op.h
浏览文件 @
8329a1f1
...
...
@@ -23,32 +23,74 @@ template <typename T>
class
MomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
bool
use_nesterov
=
ctx
.
Attr
<
bool
>
(
"use_nesterov"
);
auto
p_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
v_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity_out
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
velocity_var
=
ctx
.
InputVar
(
"Velocity"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
LoDTensor
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"VelocityOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
p_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
v_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity_out
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
v
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
v_out
=
v
*
mu
+
g
;
if
(
use_nesterov
)
{
p_out
=
p
-
(
g
+
v_out
*
mu
)
*
lr
[
0
];
}
else
{
p_out
=
p
-
lr
[
0
]
*
v_out
;
}
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// sparse update embedding with selectedrows
PADDLE_ENFORCE
(
velocity_var
->
IsType
<
framework
::
SelectedRows
>
(),
"Unmatched Type of Param and Grad"
);
auto
velocity
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"VelocityOut"
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
v
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
// sparse update maybe empty.
if
(
grad
->
rows
().
size
()
==
0
)
{
return
;
}
PADDLE_ENFORCE
(
grad
->
height
()
==
velocity
->
height
(),
"Unmatched gradient and velocity."
);
auto
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
v_out
=
velocity_out
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
*
p
=
param
->
data
<
T
>
();
auto
*
g
=
grad
->
value
().
data
<
T
>
();
auto
*
v
=
velocity
->
value
().
data
<
T
>
();
size_t
grad_row_numel
=
grad
->
value
().
numel
()
/
grad
->
rows
().
size
();
v_out
=
v
*
mu
+
g
;
if
(
use_nesterov
)
{
p_out
=
p
-
(
g
+
v_out
*
mu
)
*
lr
[
0
];
for
(
size_t
i
=
0
;
i
<
grad
->
rows
().
size
();
++
i
)
{
size_t
grad_row_index
=
grad
->
rows
()[
i
];
for
(
size_t
j
=
0
;
j
<
grad_row_numel
;
++
j
)
{
size_t
p_i
=
grad_row_index
*
grad_row_numel
+
j
;
size_t
g_i
=
i
*
grad_row_numel
+
j
;
v_out
[
g_i
]
=
v
[
g_i
]
*
mu
+
g
[
g_i
];
if
(
use_nesterov
)
{
p_out
[
p_i
]
=
p
[
p_i
]
-
(
g
[
g_i
]
+
v_out
[
g_i
]
*
mu
)
*
lr
[
0
];
}
else
{
p_out
[
p_i
]
=
p
[
p_i
]
-
v_out
[
g_i
]
*
lr
[
0
];
}
}
}
}
else
{
p_out
=
p
-
lr
[
0
]
*
v_out
;
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
)
;
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_momentum_op.py
浏览文件 @
8329a1f1
...
...
@@ -16,6 +16,8 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
op_test
import
OpTest
...
...
@@ -88,5 +90,103 @@ class TestMomentumOp2(OpTest):
self
.
check_output
()
class
TestSparseMomentumOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
use_nesterov
=
False
def
check_with_place
(
self
,
place
):
self
.
init_kernel
()
scope
=
core
.
Scope
()
# create and initialize Grad Variable
height
=
10
rows
=
[
0
,
4
,
7
]
row_numel
=
12
mu
=
1.0
use_nesterov
=
self
.
use_nesterov
# create and initialize Param Variable
param
=
scope
.
var
(
'Param'
).
get_tensor
()
param_array
=
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
)
param
.
set
(
param_array
,
place
)
param_out
=
scope
.
var
(
"ParamOut"
).
get_tensor
()
param_out_array
=
np
.
full
((
height
,
row_numel
),
0.0
).
astype
(
"float32"
)
param_out
.
set
(
param_out_array
,
place
)
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
height
)
grad_selected_rows
.
set_rows
(
rows
)
grad_np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
grad_np_array
[
0
,
0
]
=
2.0
grad_np_array
[
2
,
8
]
=
4.0
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
grad_np_array
,
place
)
velocity_selected_rows
=
scope
.
var
(
'Velocity'
).
get_selected_rows
()
velocity_selected_rows
.
set_height
(
height
)
velocity_selected_rows
.
set_rows
(
rows
)
velocity_np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
velocity_np_array
[
0
,
0
]
=
2.0
velocity_np_array
[
2
,
8
]
=
2.0
velocity_tensor
=
velocity_selected_rows
.
get_tensor
()
velocity_tensor
.
set
(
velocity_np_array
,
place
)
velocity_out_selected_rows
=
scope
.
var
(
'VelocityOut'
).
get_selected_rows
(
)
velocity_out_selected_rows
.
set_height
(
height
)
velocity_out_selected_rows
.
set_rows
(
rows
)
velocity_out_np_array
=
np
.
full
((
len
(
rows
),
row_numel
),
0.0
).
astype
(
"float32"
)
velocity_out_tensor
=
velocity_out_selected_rows
.
get_tensor
()
velocity_out_tensor
.
set
(
velocity_out_np_array
,
place
)
# create and initialize LeraningRate Variable
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
lr_array
=
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
lr
.
set
(
lr_array
,
place
)
# create and run operator
op
=
Operator
(
"momentum"
,
Param
=
'Param'
,
Grad
=
'Grad'
,
Velocity
=
'Velocity'
,
ParamOut
=
'ParamOut'
,
VelocityOut
=
'VelocityOut'
,
LearningRate
=
'LearningRate'
,
mu
=
mu
,
use_nesterov
=
use_nesterov
)
op
.
run
(
scope
,
place
)
# get and compare result
param_out_np_array
=
np
.
array
(
param_out
)
velocity_out_np_array
=
np
.
array
(
velocity_out_tensor
)
# TODO(dzh): add a more suitable general numpy interface
# for sparse update.
_velocity_out
=
mu
*
velocity_np_array
+
grad_np_array
_param
=
param_array
[
rows
]
if
use_nesterov
:
_param_out
=
_param
-
grad_np_array
*
lr_array
-
\
_velocity_out
*
mu
*
lr_array
else
:
_param_out
=
_param
-
lr
*
_velocity_out
self
.
assertTrue
((
_param_out
==
param_out_np_array
[
rows
]).
all
())
self
.
assertTrue
((
_velocity_out
==
velocity_out_np_array
).
all
())
def
init_kernel
(
self
):
pass
def
test_sparse_momentum
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
class
TestSparseMomentumOp2
(
TestSparseMomentumOp
):
def
init_kernel
(
self
):
self
.
use_nesterov
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录