Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
32e05b01
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32e05b01
编写于
11月 12, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
c8801e10
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
40 addition
and
31 deletion
+40
-31
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+9
-0
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+1
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+2
-5
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+28
-25
未找到文件。
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
32e05b01
...
...
@@ -86,6 +86,7 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
pre_out_mat
=
-
1
*
pre_out_mat
;
bit_code
->
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
...
...
@@ -146,6 +147,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
Eigen
::
array
<
int
,
2
>
bcast
({{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])}});
// softrelu derivative
...
...
@@ -160,9 +162,16 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
auto
bias_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
bias_grad
);
bias_grad_mat
=
-
1
*
bias_grad_mat
;
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
->
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
auto
w_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
w_grad
);
auto
in_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
in_grad
);
w_grad_mat
=
-
1
*
w_grad_mat
;
in_grad_mat
=
-
1
*
in_grad_mat
;
}
};
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
32e05b01
...
...
@@ -157,7 +157,7 @@ class CustomCode : public Code {
int
get_length
()
const
{
int
length
=
0
;
for
(
int
i
=
0
;
i
<
ptable_
->
dims
()[
1
]
;
i
++
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
ptable_
->
dims
()[
1
])
;
i
++
)
{
if
(
ptable_
->
data
<
R
>
()[
index_
*
static_cast
<
int
>
(
ptable_
->
dims
()[
1
])
+
i
]
!=
-
1
)
{
length
++
;
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
32e05b01
...
...
@@ -138,11 +138,8 @@ class OpTest(unittest.TestCase):
cls
.
dtype
=
"float32"
cls
.
outputs
=
{}
# np.random.seed(123)
# random.seed(124)
np
.
random
.
seed
(
190
)
random
.
seed
(
200
)
np
.
random
.
seed
(
123
)
random
.
seed
(
124
)
@
classmethod
def
tearDownClass
(
cls
):
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
32e05b01
...
...
@@ -17,6 +17,9 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
math
# import paddle.fluid as fluid
# import paddle.fluid.core as core
# from op_builder import OpBuilder
from
op_test
import
OpTest
np
.
random
.
seed
(
100
)
...
...
@@ -51,7 +54,7 @@ class CodeTableWithCustomTree(object):
def
get_length
(
self
):
length
=
0
for
ele
in
self
.
ptable_
[
self
.
index_
]:
for
ele
in
self
.
ptable_
[
self
.
index_
]:
# find the first -1 to stop trace
if
ele
>=
0
:
length
=
length
+
1
...
...
@@ -71,12 +74,10 @@ def hsigmoid(x, w, label, bias, num_classes):
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
batch_size
):
#print("\n leaf {leaf}: \n".format(leaf = label[i]))
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
#print("index {index} ".format(index = j))
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
...
...
@@ -87,13 +88,12 @@ def hsigmoid(x, w, label, bias, num_classes):
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
pre_output
=
-
1
*
pre_output
for
i
in
range
(
batch_size
):
#print("\n leaf {leaf}: \n".format(leaf = label[i]))
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
#print("bit {bit} ".format(bit = code_table.cal_bit(j)))
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
...
...
@@ -108,6 +108,7 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
batch_size
=
x
.
shape
[
0
]
code_length
=
len
(
ptable
[
0
])
code_table
=
[
0
for
_
in
range
(
code_length
)]
# init pre_out with shape [N, code_length]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
...
...
@@ -125,6 +126,7 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
pre_output
[
i
][
j
]
+=
np
.
dot
(
w
[
idx
],
x
[
i
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
pre_output
=
-
1
*
pre_output
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
...
...
@@ -141,26 +143,27 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
return
pre_output
,
out
# class TestHSigmoidOp(OpTest):
# def setUp(self):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6
# feature_size = 8
# batch_size = 7
# x = np.random.random((batch_size, feature_size)).astype("float32")
# w = np.random.random((num_classes - 1, feature_size)).astype("float32")
# label = np.random.randint(0, num_classes, (batch_size, 1))
# bias = np.random.random((1, num_classes - 1)).astype("float32")
# self.attrs = {'num_classes': num_classes}
# self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
# pre_output, out = hsigmoid(x, w, label, bias, num_classes)
# self.outputs = {'PreOut': pre_output, 'Out': out}
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
#
def test_check_output(self):
#
self.check_output()
def
test_check_output
(
self
):
self
.
check_output
()
#
def test_check_grad(self):
#
self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
...
...
@@ -169,9 +172,9 @@ class TestHSigmoidOpWithCostumTree(OpTest):
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
10
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
10
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录