Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
06180779
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
06180779
编写于
9月 06, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/ut/lac
上级
6b104c90
6de0a18d
变更
63
展开全部
隐藏空白更改
内联
并排
Showing
63 changed file
with
1364 addition
and
803 deletion
+1364
-803
CMakeLists.txt
CMakeLists.txt
+3
-1
cmake/external/anakin.cmake
cmake/external/anakin.cmake
+6
-13
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+1
-1
doc/fluid/api/layers.rst
doc/fluid/api/layers.rst
+16
-0
doc/fluid/new_docs/user_guides/howto/debug/visualdl.md
doc/fluid/new_docs/user_guides/howto/debug/visualdl.md
+1
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
+0
-3
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
+1
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+1
-1
paddle/fluid/framework/ir/graph_viz_pass.cc
paddle/fluid/framework/ir/graph_viz_pass.cc
+42
-17
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+8
-2
paddle/fluid/inference/analysis/analysis_pass.cc
paddle/fluid/inference/analysis/analysis_pass.cc
+1
-1
paddle/fluid/inference/analysis/analysis_pass.h
paddle/fluid/inference/analysis/analysis_pass.h
+8
-36
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+3
-3
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+2
-1
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+84
-80
paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc
...inference/analysis/analyzer_text_classification_tester.cc
+50
-27
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
...fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
+1
-1
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
.../fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
+2
-2
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
+1
-1
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
...fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
+1
-1
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
.../fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
+2
-2
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
+14
-10
paddle/fluid/inference/analysis/model_store_pass.h
paddle/fluid/inference/analysis/model_store_pass.h
+1
-1
paddle/fluid/inference/analysis/pass_manager.cc
paddle/fluid/inference/analysis/pass_manager.cc
+0
-11
paddle/fluid/inference/analysis/pass_manager.h
paddle/fluid/inference/analysis/pass_manager.h
+2
-14
paddle/fluid/inference/analysis/pass_manager_tester.cc
paddle/fluid/inference/analysis/pass_manager_tester.cc
+0
-35
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
...id/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
+1
-1
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
...uid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
+2
-2
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
+1
-1
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+18
-19
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+0
-1
paddle/fluid/inference/api/api_anakin_engine.cc
paddle/fluid/inference/api/api_anakin_engine.cc
+7
-0
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+41
-0
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+2
-1
paddle/fluid/operators/flatten_op.cc
paddle/fluid/operators/flatten_op.cc
+115
-0
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+8
-10
paddle/fluid/operators/fusion_lstm_op.cc
paddle/fluid/operators/fusion_lstm_op.cc
+240
-280
paddle/fluid/operators/layer_norm_op.cu
paddle/fluid/operators/layer_norm_op.cu
+7
-7
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+100
-0
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+119
-7
paddle/fluid/operators/transpose_op.cc
paddle/fluid/operators/transpose_op.cc
+103
-3
paddle/fluid/operators/transpose_op.cu.cc
paddle/fluid/operators/transpose_op.cu.cc
+7
-0
paddle/fluid/operators/unsqueeze_op.cc
paddle/fluid/operators/unsqueeze_op.cc
+117
-6
paddle/fluid/platform/dynload/dynamic_loader.cc
paddle/fluid/platform/dynload/dynamic_loader.cc
+6
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+3
-1
python/paddle/dataset/image.py
python/paddle/dataset/image.py
+2
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+21
-11
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+46
-4
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+20
-14
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+13
-5
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+10
-1
python/paddle/fluid/tests/unittests/test_flatten_op.py
python/paddle/fluid/tests/unittests/test_flatten_op.py
+6
-3
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
+5
-39
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
...luid/tests/unittests/test_parallel_executor_fetch_feed.py
+2
-0
python/paddle/fluid/tests/unittests/test_prelu_op.py
python/paddle/fluid/tests/unittests/test_prelu_op.py
+13
-9
python/paddle/fluid/tests/unittests/test_reshape_op.py
python/paddle/fluid/tests/unittests/test_reshape_op.py
+30
-94
python/paddle/fluid/tests/unittests/test_squeeze_op.py
python/paddle/fluid/tests/unittests/test_squeeze_op.py
+6
-3
python/paddle/fluid/tests/unittests/test_transpose_op.py
python/paddle/fluid/tests/unittests/test_transpose_op.py
+7
-4
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
+6
-3
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+22
-0
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+1
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+5
-5
未找到文件。
CMakeLists.txt
浏览文件 @
06180779
...
...
@@ -213,9 +213,11 @@ include(configure) # add paddle env configuration
if
(
WITH_GPU
)
include
(
cuda
)
include
(
tensorrt
)
endif
()
if
(
WITH_MKL OR WITH_MKLML
)
include
(
external/anakin
)
elseif
()
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is used in
GPU
only now."
FORCE
)
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is used in
MKL
only now."
FORCE
)
endif
()
include
(
generic
)
# simplify cmake module
...
...
cmake/external/anakin.cmake
浏览文件 @
06180779
...
...
@@ -16,16 +16,6 @@ set(ANAKIN_LIBRARY ${ANAKIN_INSTALL_DIR})
set
(
ANAKIN_SHARED_LIB
${
ANAKIN_LIBRARY
}
/libanakin.so
)
set
(
ANAKIN_SABER_LIB
${
ANAKIN_LIBRARY
}
/libanakin_saber_common.so
)
# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later.
set
(
INFERENCE_URL
"http://paddle-inference-dist.bj.bcebos.com"
)
set
(
ANAKIN_MODLE_URL
"
${
INFERENCE_URL
}
/mobilenet_v2.anakin.bin"
)
set
(
ANAKIN_RNN_MODLE_URL
"
${
INFERENCE_URL
}
/anakin_test%2Fditu_rnn.anakin2.model.bin"
)
set
(
ANAKIN_RNN_DATA_URL
"
${
INFERENCE_URL
}
/anakin_test%2Fditu_rnn_data.txt"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
ANAKIN_SOURCE_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_MODLE_URL
}
-N"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_RNN_MODLE_URL
}
-N"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_RNN_DATA_URL
}
-N"
)
include_directories
(
${
ANAKIN_INCLUDE
}
)
include_directories
(
${
ANAKIN_INCLUDE
}
/saber/
)
include_directories
(
${
ANAKIN_INCLUDE
}
/saber/core/
)
...
...
@@ -48,6 +38,11 @@ set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-reorder
-Wno-error=cpp
)
if
(
WITH_GPU
)
set
(
CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=YES -DCUDNN_ROOT=
${
CUDNN_ROOT
}
-DCUDNN_INCLUDE_DIR=
${
CUDNN_INCLUDE_DIR
}
)
else
()
set
(
CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=NO
)
endif
()
ExternalProject_Add
(
extern_anakin
${
EXTERNAL_PROJECT_LOG_ARGS
}
...
...
@@ -56,13 +51,11 @@ ExternalProject_Add(
GIT_TAG
"9424277cf9ae180a14aff09560d3cd60a49c76d2"
PREFIX
${
ANAKIN_SOURCE_DIR
}
UPDATE_COMMAND
""
CMAKE_ARGS
-DUSE_GPU_PLACE=YES
CMAKE_ARGS
${
CMAKE_ARGS_PREFIX
}
-DUSE_X86_PLACE=YES
-DBUILD_WITH_UNIT_TEST=NO
-DPROTOBUF_ROOT=
${
THIRD_PARTY_PATH
}
/install/protobuf
-DMKLML_ROOT=
${
THIRD_PARTY_PATH
}
/install/mklml
-DCUDNN_ROOT=
${
CUDNN_ROOT
}
-DCUDNN_INCLUDE_DIR=
${
CUDNN_INCLUDE_DIR
}
-DENABLE_OP_TIMER=
${
ANAKIN_ENABLE_OP_TIMER
}
${
EXTERNAL_OPTIONAL_ARGS
}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=
${
ANAKIN_INSTALL_DIR
}
...
...
cmake/inference_lib.cmake
浏览文件 @
06180779
...
...
@@ -145,7 +145,7 @@ copy(memory_lib
set
(
inference_deps paddle_fluid_shared paddle_fluid
)
set
(
module
"inference/api"
)
if
(
WITH_ANAKIN AND WITH_
GPU
)
if
(
WITH_ANAKIN AND WITH_
MKL
)
copy
(
anakin_inference_lib DEPS paddle_inference_api inference_anakin_api
SRCS
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/libinference_anakin_api*
# compiled anakin api
...
...
doc/fluid/api/layers.rst
浏览文件 @
06180779
...
...
@@ -822,6 +822,14 @@ pad
.. autofunction:: paddle.fluid.layers.pad
:noindex:
.. _api_fluid_layers_pad_constant_like:
pad_constant_like
---
.. autofunction:: paddle.fluid.layers.pad_constant_like
:noindex:
.. _api_fluid_layers_label_smooth:
label_smooth
...
...
@@ -1145,6 +1153,14 @@ sigmoid
.. autofunction:: paddle.fluid.layers.sigmoid
:noindex:
.. _api_fluid_layers_hsigmoid:
hsigmoid
-------
.. autofunction:: paddle.fluid.layers.hsigmoid
:noindex:
.. _api_fluid_layers_logsigmoid:
logsigmoid
...
...
doc/fluid/new_docs/user_guides/howto/debug/visualdl.md
浏览文件 @
06180779
...
...
@@ -104,6 +104,7 @@ visualDL --logdir=scratch_log --port=8080
# 访问 http://127.0.0.1:8080
```
如果出现`TypeError: __init__() got an unexpected keyword argument 'file'`, 是因为protobuf不是3.5以上,运行`pip install --upgrade protobuf`就能解决。
如果在虚拟环境下仍然遇到安装问题,请尝试以下方法。
...
...
paddle/fluid/API.spec
浏览文件 @
06180779
...
...
@@ -43,6 +43,7 @@ paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list',
paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Trainer.__init__ ArgSpec(args=['self', 'train_func', 'optimizer_func', 'param_path', 'place', 'parallel', 'checkpoint_config'], varargs=None, keywords=None, defaults=(None, None, False, None))
paddle.fluid.Trainer.save_inference_model ArgSpec(args=['self', 'param_path', 'feeded_var_names', 'target_var_indexes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.save_params ArgSpec(args=['self', 'param_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Trainer.test ArgSpec(args=['self', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
浏览文件 @
06180779
...
...
@@ -13,13 +13,10 @@
// limitations under the License.
#include "paddle/fluid/framework/ir/attention_lstm_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/api/helper.h"
namespace
paddle
{
namespace
framework
{
...
...
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
浏览文件 @
06180779
...
...
@@ -11,6 +11,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
06180779
...
...
@@ -85,7 +85,7 @@ void GraphPatternDetector::operator()(Graph* graph,
LOG
(
INFO
)
<<
"detect "
<<
subgraphs
.
size
()
<<
" subgraph matches the pattern"
;
int
id
=
0
;
for
(
auto
&
g
:
subgraphs
)
{
LOG
(
INFO
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
VLOG
(
3
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
handler
(
g
,
graph
);
}
}
...
...
paddle/fluid/framework/ir/graph_viz_pass.cc
浏览文件 @
06180779
...
...
@@ -50,20 +50,37 @@ std::unique_ptr<ir::Graph> GraphVizPass::ApplyImpl(
Dot
dot
;
std
::
vector
<
Dot
::
Attr
>
op_attrs
({
Dot
::
Attr
(
"style"
,
"filled"
),
Dot
::
Attr
(
"shape"
,
"box"
),
Dot
::
Attr
(
"fillcolor"
,
"red"
)});
std
::
vector
<
Dot
::
Attr
>
var_attrs
({
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
// Dot::Attr("shape", "diamond"),
Dot
::
Attr
(
"fillcolor"
,
"yellow"
)});
std
::
vector
<
Dot
::
Attr
>
marked_op_attrs
({
Dot
::
Attr
(
"style"
,
"filled"
),
Dot
::
Attr
(
"shape"
,
"box"
),
Dot
::
Attr
(
"fillcolor"
,
"lightgray"
)});
std
::
vector
<
Dot
::
Attr
>
marked_var_attrs
(
{
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
// Dot::Attr("shape", "diamond"),
Dot
::
Attr
(
"fillcolor"
,
"lightgray"
)});
const
std
::
vector
<
Dot
::
Attr
>
op_attrs
({
Dot
::
Attr
(
"style"
,
"rounded,filled,bold"
),
//
Dot
::
Attr
(
"shape"
,
"box"
),
//
Dot
::
Attr
(
"color"
,
"#303A3A"
),
//
Dot
::
Attr
(
"fontcolor"
,
"#ffffff"
),
//
Dot
::
Attr
(
"width"
,
"1.3"
),
//
Dot
::
Attr
(
"height"
,
"0.84"
),
//
Dot
::
Attr
(
"fontname"
,
"Arial"
),
//
});
const
std
::
vector
<
Dot
::
Attr
>
arg_attrs
({
Dot
::
Attr
(
"shape"
,
"box"
),
//
Dot
::
Attr
(
"style"
,
"rounded,filled,bold"
),
//
Dot
::
Attr
(
"fontname"
,
"Arial"
),
//
Dot
::
Attr
(
"fillcolor"
,
"#999999"
),
//
Dot
::
Attr
(
"color"
,
"#dddddd"
),
//
});
const
std
::
vector
<
Dot
::
Attr
>
param_attrs
({
Dot
::
Attr
(
"shape"
,
"box"
),
//
Dot
::
Attr
(
"style"
,
"rounded,filled,bold"
),
//
Dot
::
Attr
(
"fontname"
,
"Arial"
),
//
Dot
::
Attr
(
"color"
,
"#148b97"
),
//
Dot
::
Attr
(
"fontcolor"
,
"#ffffff"
),
//
});
const
std
::
vector
<
Dot
::
Attr
>
marked_op_attrs
(
{
Dot
::
Attr
(
"style"
,
"rounded,filled,bold"
),
Dot
::
Attr
(
"shape"
,
"box"
),
Dot
::
Attr
(
"fillcolor"
,
"yellow"
)});
const
std
::
vector
<
Dot
::
Attr
>
marked_var_attrs
(
{
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
Dot
::
Attr
(
"shape"
,
"box"
),
Dot
::
Attr
(
"fillcolor"
,
"yellow"
)});
auto
marked_nodes
=
ConsumeMarkedNodes
(
graph
.
get
());
// Create nodes
...
...
@@ -74,9 +91,17 @@ std::unique_ptr<ir::Graph> GraphVizPass::ApplyImpl(
marked_nodes
.
count
(
n
)
?
marked_op_attrs
:
op_attrs
;
dot
.
AddNode
(
node_id
,
attr
,
node_id
);
}
else
if
(
n
->
IsVar
())
{
decltype
(
op_attrs
)
attr
=
marked_nodes
.
count
(
n
)
?
marked_var_attrs
:
var_attrs
;
dot
.
AddNode
(
node_id
,
attr
,
node_id
);
decltype
(
op_attrs
)
*
attr
;
if
(
marked_nodes
.
count
(
n
))
{
attr
=
&
marked_var_attrs
;
}
else
if
(
const_cast
<
Node
*>
(
n
)
->
Var
()
&&
const_cast
<
Node
*>
(
n
)
->
Var
()
->
Persistable
())
{
attr
=
&
param_attrs
;
}
else
{
attr
=
&
arg_attrs
;
}
dot
.
AddNode
(
node_id
,
*
attr
,
node_id
);
}
node2dot
[
n
]
=
node_id
;
}
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
06180779
...
...
@@ -6,6 +6,7 @@ cc_library(analysis SRCS pass_manager.cc node.cc data_flow_graph.cc graph_traits
analyzer.cc
helper.cc
# passes
analysis_pass.cc
fluid_to_data_flow_graph_pass.cc
data_flow_graph_to_fluid_pass.cc
dfg_graphviz_draw_pass.cc
...
...
@@ -99,12 +100,17 @@ inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
set
(
TEXT_CLASSIFICATION_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz"
)
set
(
TEXT_CLASSIFICATION_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz"
)
set
(
TEXT_CLASSIFICATION_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/text_classification"
CACHE PATH
"Text Classification model and data root."
FORCE
)
if
(
NOT EXISTS
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
AND WITH_TESTING AND WITH_INFERENCE
)
inference_download_and_uncompress
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
${
TEXT_CLASSIFICATION_MODEL_URL
}
"text-classification-Senta.tar.gz"
)
inference_download_and_uncompress
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
${
TEXT_CLASSIFICATION_DATA_URL
}
"text_classification_data.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_text_classification SRCS
test_text_classification
.cc
inference_analysis_test
(
test_text_classification SRCS
analyzer_text_classification_tester
.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/text-classification-Senta
)
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/text-classification-Senta
--infer_data=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/data.txt
--topn=1
# Just run top 1 batch.
)
paddle/fluid/inference/analysis/pass.cc
→
paddle/fluid/inference/analysis/
analysis_
pass.cc
浏览文件 @
06180779
...
...
@@ -12,4 +12,4 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/
analysis_
pass.h"
paddle/fluid/inference/analysis/pass.h
→
paddle/fluid/inference/analysis/
analysis_
pass.h
浏览文件 @
06180779
...
...
@@ -28,10 +28,10 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
class
Pass
{
class
Analysis
Pass
{
public:
Pass
()
=
default
;
virtual
~
Pass
()
=
default
;
Analysis
Pass
()
=
default
;
virtual
~
Analysis
Pass
()
=
default
;
// Mutable Pass.
virtual
bool
Initialize
(
Argument
*
argument
)
{
return
false
;
}
// Readonly Pass.
...
...
@@ -42,23 +42,16 @@ class Pass {
virtual
bool
Finalize
()
{
return
false
;
}
// Get a Pass appropriate to print the Node this pass operates on.
virtual
Pass
*
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
{
virtual
Analysis
Pass
*
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
{
return
nullptr
;
}
// Create a debugger Pass that draw the DFG by graphviz toolkit.
virtual
Pass
*
CreateGraphvizDebugerPass
()
const
{
return
nullptr
;
}
virtual
Analysis
Pass
*
CreateGraphvizDebugerPass
()
const
{
return
nullptr
;
}
virtual
void
Run
()
{
LOG
(
FATAL
)
<<
"not valid"
;
}
// Run on a single Node.
virtual
void
Run
(
Node
*
x
)
{
LOG
(
FATAL
)
<<
"not valid"
;
}
// Run on a single Function.
virtual
void
Run
(
Function
*
x
)
{
LOG
(
FATAL
)
<<
"not valid"
;
}
// Run on a single FunctionBlock.
virtual
void
Run
(
FunctionBlock
*
x
)
{
LOG
(
FATAL
)
<<
"not valid"
;
}
// Run on a single DataFlowGraph.
virtual
void
Run
(
DataFlowGraph
*
x
)
{
LOG
(
FATAL
)
<<
"not valid"
;
}
virtual
void
Run
(
DataFlowGraph
*
x
)
=
0
;
// Human-readable short representation.
virtual
std
::
string
repr
()
const
=
0
;
...
...
@@ -66,29 +59,8 @@ class Pass {
virtual
std
::
string
description
()
const
{
return
"No DOC"
;
}
};
// NodePass process on any Node types.
class
NodePass
:
public
Pass
{
public:
virtual
void
Run
(
Node
*
node
)
=
0
;
};
// NodePass process on any Function node types.
class
FunctionPass
:
public
Pass
{
public:
virtual
void
Run
(
Function
*
node
)
=
0
;
};
// NodePass process on any FunctionBlock node types.
class
FunctionBlockPass
:
public
Pass
{
public:
virtual
void
Run
(
FunctionBlock
*
node
)
=
0
;
};
// GraphPass processes on any GraphType.
class
DataFlowGraphPass
:
public
Pass
{
public:
virtual
void
Run
(
DataFlowGraph
*
graph
)
=
0
;
};
class
DataFlowGraphPass
:
public
AnalysisPass
{};
}
// namespace analysis
}
// namespace inference
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
06180779
...
...
@@ -15,6 +15,7 @@
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
...
...
@@ -58,7 +59,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
std
::
string
description
()
const
override
{
return
"DFG pass manager."
;
}
private:
void
AddPass
(
const
std
::
string
&
name
,
Pass
*
pass
)
{
void
AddPass
(
const
std
::
string
&
name
,
Analysis
Pass
*
pass
)
{
VLOG
(
3
)
<<
"Adding pass "
<<
name
;
Register
(
name
,
pass
);
AddGraphvizDebugerPass
(
pass
);
...
...
@@ -87,7 +88,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
}
// Add the graphviz debuger pass if the parent pass has one.
void
AddGraphvizDebugerPass
(
Pass
*
pass
)
{
void
AddGraphvizDebugerPass
(
Analysis
Pass
*
pass
)
{
auto
*
debuger_pass
=
pass
->
CreateGraphvizDebugerPass
();
if
(
debuger_pass
)
{
Register
(
debuger_pass
->
repr
(),
debuger_pass
);
...
...
@@ -106,7 +107,6 @@ void Analyzer::Run(Argument* argument) {
}
}
passes
.
push_back
(
"graph_viz_pass"
);
// Ugly support fluid-to-ir-pass
argument
->
Set
(
kFluidToIrPassesAttr
,
new
std
::
vector
<
std
::
string
>
(
passes
));
for
(
auto
&
x
:
data_
)
{
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
06180779
...
...
@@ -38,8 +38,9 @@ limitations under the License. */
#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
namespace
paddle
{
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
06180779
...
...
@@ -16,6 +16,7 @@
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
...
...
@@ -24,12 +25,12 @@
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_ditu_rnn_model
,
""
,
"model path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_data
,
""
,
"data path for ditu RNN"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
inference
{
...
...
@@ -220,39 +221,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
std
::
string
DescribeTensor
(
const
PaddleTensor
&
tensor
)
{
std
::
stringstream
os
;
os
<<
"Tensor ["
<<
tensor
.
name
<<
"]
\n
"
;
os
<<
" - type: "
;
switch
(
tensor
.
dtype
)
{
case
PaddleDType
::
FLOAT32
:
os
<<
"float32"
;
break
;
case
PaddleDType
::
INT64
:
os
<<
"int64"
;
break
;
default:
os
<<
"unset"
;
}
os
<<
'\n'
;
os
<<
" - shape: "
<<
to_string
(
tensor
.
shape
)
<<
'\n'
;
os
<<
" - lod: "
;
for
(
auto
&
l
:
tensor
.
lod
)
{
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
}
}
// namespace
const
float
ditu_rnn_target_data
[]
=
{
...
...
@@ -266,11 +234,29 @@ const float ditu_rnn_target_data[] = {
10.7286
,
12.0595
,
10.6672
,
0
,
0
,
0
,
0
,
0
,
93.5771
,
3.84641
,
0
,
0
,
0
,
0
,
0
,
0
,
169.426
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
// Test with a really complicate model.
void
TestDituRNNPrediction
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_path
,
int
batch_size
,
bool
use_analysis
,
bool
activate_ir
,
int
num_times
=
1
)
{
void
TestDituRNNPrediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
config
.
prog_file
=
FLAGS_infer_ditu_rnn_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_ditu_rnn_model
+
"/param"
;
...
...
@@ -281,6 +267,8 @@ void TestDituRNNPrediction(const std::string &model_path,
PADDLE_ENFORCE
(
config
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
);
// default
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
...
...
@@ -288,40 +276,55 @@ void TestDituRNNPrediction(const std::string &model_path,
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
data_path
,
batch_size
);
DataRecord
data
(
FLAGS_infer_ditu_rnn_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
LOG
(
INFO
)
<<
"===========profile result==========="
;
LOG
(
INFO
)
<<
"batch_size: "
<<
batch_size
<<
", repeat: "
<<
num_times
<<
", latency: "
<<
timer
.
toc
()
/
num_times
<<
"ms"
;
LOG
(
INFO
)
<<
"====================================="
;
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
j
=
0
;
j
<
size
;
j
++
)
{
EXPECT_NEAR
(
data
[
j
],
base_data
[
j
],
1e-3
);
if
(
num_threads
==
1
)
{
// Prepare inputs.
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
}
else
{
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_ditu_rnn_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictors
[
tid
]
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
LOG
(
INFO
)
<<
"====================================="
;
if
(
use_analysis
&&
activate_ir
)
{
AnalysisPredictor
*
analysis_predictor
=
...
...
@@ -350,25 +353,26 @@ void TestDituRNNPrediction(const std::string &model_path,
}
}
// Directly infer with the original model.
TEST
(
Analyzer
,
DituRNN_without_analysis
)
{
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
false
,
false
,
FLAGS_repeat
);
// Inference with analysis and IR, easy for profiling independently.
TEST
(
Analyzer
,
DituRNN
)
{
TestDituRNNPrediction
(
true
,
true
,
FLAGS_num_threads
);
}
// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST
(
Analyzer
,
DituRNN_with_analysis
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
true
,
false
,
FLAGS_repeat
);
}
// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST
(
Analyzer
,
DituRNN_with_analysis_with_IR
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis and IR fuse"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
true
,
true
,
FLAGS_repeat
);
// Other unit-tests of DituRNN, test different options of use_analysis,
// activate_ir and multi-threads.
TEST
(
Analyzer
,
DituRNN_tests
)
{
int
num_threads
[
2
]
=
{
1
,
4
};
for
(
auto
i
:
num_threads
)
{
// Directly infer with the original model.
TestDituRNNPrediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
TestDituRNNPrediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
TestDituRNNPrediction
(
true
,
true
,
i
);
}
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/
test_text_classification
.cc
→
paddle/fluid/inference/analysis/
analyzer_text_classification_tester
.cc
浏览文件 @
06180779
...
...
@@ -12,19 +12,23 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/api/timer.h"
DEFINE_string
(
infer_model
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
infer_data
,
""
,
"Path of the dataset."
);
DEFINE_int32
(
batch_size
,
1
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"How many times to repeat run."
);
DEFINE_int32
(
topn
,
-
1
,
"Run top n batches of data to save time"
);
namespace
paddle
{
...
...
@@ -44,41 +48,67 @@ void PrintTime(const double latency, const int bs, const int repeat) {
LOG
(
INFO
)
<<
"====================================="
;
}
void
Main
(
int
batch_size
)
{
// Three sequence inputs.
std
::
vector
<
PaddleTensor
>
input_slots
(
1
);
// one batch starts
// data --
int64_t
data0
[]
=
{
0
,
1
,
2
};
for
(
auto
&
input
:
input_slots
)
{
input
.
data
.
Reset
(
data0
,
sizeof
(
data0
));
input
.
shape
=
std
::
vector
<
int
>
({
3
,
1
});
// dtype --
input
.
dtype
=
PaddleDType
::
INT64
;
// LoD --
input
.
lod
=
std
::
vector
<
std
::
vector
<
size_t
>>
({{
0
,
3
}});
struct
DataReader
{
DataReader
(
const
std
::
string
&
path
)
:
file
(
new
std
::
ifstream
(
path
))
{}
bool
NextBatch
(
PaddleTensor
*
tensor
,
int
batch_size
)
{
PADDLE_ENFORCE_EQ
(
batch_size
,
1
);
std
::
string
line
;
tensor
->
lod
.
clear
();
tensor
->
lod
.
emplace_back
(
std
::
vector
<
size_t
>
({
0
}));
std
::
vector
<
int64_t
>
data
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
!
std
::
getline
(
*
file
,
line
))
return
false
;
inference
::
split_to_int64
(
line
,
' '
,
&
data
);
}
tensor
->
lod
.
front
().
push_back
(
data
.
size
());
tensor
->
data
.
Resize
(
data
.
size
()
*
sizeof
(
int64_t
));
memcpy
(
tensor
->
data
.
data
(),
data
.
data
(),
data
.
size
()
*
sizeof
(
int64_t
));
tensor
->
shape
.
clear
();
tensor
->
shape
.
push_back
(
data
.
size
());
tensor
->
shape
.
push_back
(
1
);
return
true
;
}
std
::
unique_ptr
<
std
::
ifstream
>
file
;
};
void
Main
(
int
batch_size
)
{
// shape --
// Create Predictor --
AnalysisConfig
config
;
config
.
model_dir
=
FLAGS_infer_model
;
config
.
use_gpu
=
false
;
config
.
enable_ir_optim
=
true
;
config
.
ir_passes
.
push_back
(
"fc_lstm_fuse_pass"
);
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
(
1
);
// one batch starts
// data --
auto
&
input
=
input_slots
[
0
];
input
.
dtype
=
PaddleDType
::
INT64
;
inference
::
Timer
timer
;
double
sum
=
0
;
std
::
vector
<
PaddleTensor
>
output_slots
;
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
i
++
)
{
timer
.
tic
();
CHECK
(
predictor
->
Run
(
input_slots
,
&
output_slots
));
sum
+=
timer
.
toc
();
int
num_batches
=
0
;
for
(
int
t
=
0
;
t
<
FLAGS_repeat
;
t
++
)
{
DataReader
reader
(
FLAGS_infer_data
);
while
(
reader
.
NextBatch
(
&
input
,
FLAGS_batch_size
))
{
if
(
FLAGS_topn
>
0
&&
num_batches
>
FLAGS_topn
)
break
;
timer
.
tic
();
CHECK
(
predictor
->
Run
(
input_slots
,
&
output_slots
));
sum
+=
timer
.
toc
();
++
num_batches
;
}
}
PrintTime
(
sum
,
batch_size
,
FLAGS_repeat
);
PrintTime
(
sum
,
batch_size
,
num_batches
);
// Get output
LOG
(
INFO
)
<<
"get outputs "
<<
output_slots
.
size
();
...
...
@@ -100,10 +130,3 @@ void Main(int batch_size) {
TEST
(
text_classification
,
basic
)
{
Main
(
FLAGS_batch_size
);
}
}
// namespace paddle
USE_PASS
(
fc_fuse_pass
);
USE_PASS
(
seq_concat_fc_fuse_pass
);
USE_PASS
(
fc_lstm_fuse_pass
);
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
infer_clean_graph_pass
);
USE_PASS
(
attention_lstm_fuse_pass
);
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
浏览文件 @
06180779
...
...
@@ -263,7 +263,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass {
};
}
// namespace
Pass
*
DataFlowGraphToFluidPass
::
CreateGraphvizDebugerPass
()
const
{
Analysis
Pass
*
DataFlowGraphToFluidPass
::
CreateGraphvizDebugerPass
()
const
{
return
new
DFG_DebuggerPass
(
DFG_GraphvizDrawPass
::
Config
(
FLAGS_IA_graphviz_log_root
,
"data_flow_graph_to_fluid_graphviz_debugger"
));
...
...
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h
浏览文件 @
06180779
...
...
@@ -21,8 +21,8 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -42,7 +42,7 @@ class DataFlowGraphToFluidPass final : public DataFlowGraphPass {
return
"Transform a DFG to a Fluid ProgramDesc"
;
}
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
Analysis
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
protected:
// Add a Fluid Op into the ProgramDesc.
...
...
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
浏览文件 @
06180779
...
...
@@ -21,8 +21,8 @@ limitations under the License. */
#include <fstream>
#include <string>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc
浏览文件 @
06180779
...
...
@@ -66,7 +66,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass {
};
}
Pass
*
FluidToDataFlowGraphPass
::
CreateGraphvizDebugerPass
()
const
{
Analysis
Pass
*
FluidToDataFlowGraphPass
::
CreateGraphvizDebugerPass
()
const
{
return
new
DFG_DebuggerPass
(
DFG_GraphvizDrawPass
::
Config
(
FLAGS_IA_graphviz_log_root
,
"fluid-to-dfg-debuger"
));
}
...
...
paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h
浏览文件 @
06180779
...
...
@@ -22,8 +22,8 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -46,7 +46,7 @@ class FluidToDataFlowGraphPass final : public DataFlowGraphPass {
return
"transform a fluid ProgramDesc to a data flow graph."
;
}
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
Analysis
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
private:
framework
::
proto
::
ProgramDesc
const
*
desc_
;
...
...
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
浏览文件 @
06180779
...
...
@@ -14,15 +14,17 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
namespace
framework
;
static
const
char
kFluidToIrPassesAttr
[]
=
"__fluid_to_ir_passes__"
;
...
...
@@ -48,7 +50,8 @@ class FluidToIrPass final : public DataFlowGraphPass {
ANALYSIS_ARGUMENT_CHECK_FIELD
(
argument
->
fluid_model_program_path
);
// Load program.
auto
program
=
LoadProgramDesc
(
*
argument
->
fluid_model_program_path
);
argument
->
origin_program_desc
.
reset
(
new
proto
::
ProgramDesc
(
program
));
argument
->
origin_program_desc
.
reset
(
new
framework
::
proto
::
ProgramDesc
(
program
));
// Create main data flow graph.
if
(
!
argument
->
main_dfg
)
{
argument
->
main_dfg
.
reset
(
new
DataFlowGraph
);
...
...
@@ -78,12 +81,13 @@ class FluidToIrPass final : public DataFlowGraphPass {
IRPassManager
ir_passes
(
argument_
->
Get
<
ProgramDesc
>
(
"ir_program_desc"
),
nullptr
);
// Pass the scope from analysis to IR if needed.
if
(
argument_
->
Has
(
ir
::
kParamScopeAttr
))
{
if
(
argument_
->
Has
(
framework
::
ir
::
kParamScopeAttr
))
{
// Here the address is passed, attention that IR doesn't own the scope, so
// the real scope in analysis should live during the IR phase.
ir_passes
.
graph
().
Set
(
ir
::
kParamScopeAttr
,
new
Scope
*
(
&
argument_
->
Get
<
Scope
>
(
ir
::
kParamScopeAttr
)));
framework
::
ir
::
kParamScopeAttr
,
new
framework
::
Scope
*
(
&
argument_
->
Get
<
framework
::
Scope
>
(
framework
::
ir
::
kParamScopeAttr
)));
}
if
(
FLAGS_IA_enable_ir
)
{
...
...
@@ -95,12 +99,12 @@ class FluidToIrPass final : public DataFlowGraphPass {
PADDLE_ENFORCE
(
argument_
->
main_dfg
.
get
());
argument_
->
main_dfg
->
Build
(
ir_passes
.
graph
());
// inherit the arguments from ir.
if
(
ir_passes
.
graph
().
Has
(
ir
::
kFuseStatisAttr
))
{
if
(
ir_passes
.
graph
().
Has
(
framework
::
ir
::
kFuseStatisAttr
))
{
argument_
->
Set
(
ir
::
kFuseStatisAttr
,
framework
::
ir
::
kFuseStatisAttr
,
new
std
::
unordered_map
<
std
::
string
,
int
>
(
ir_passes
.
graph
().
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
ir
::
kFuseStatisAttr
)));
framework
::
ir
::
kFuseStatisAttr
)));
}
}
...
...
@@ -112,7 +116,7 @@ class FluidToIrPass final : public DataFlowGraphPass {
private:
// Load parameters from a single file or from a directory.
bool
LoadParams
(
Scope
*
scope
,
const
std
::
string
&
dir
,
bool
LoadParams
(
framework
::
Scope
*
scope
,
const
std
::
string
&
dir
,
const
std
::
string
&
prog_file
,
const
std
::
string
&
param_file
);
private:
...
...
paddle/fluid/inference/analysis/model_store_pass.h
浏览文件 @
06180779
...
...
@@ -19,7 +19,7 @@
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/
analysis_
pass.h"
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/analysis/pass_manager.cc
浏览文件 @
06180779
...
...
@@ -40,17 +40,6 @@ void DfgPassManager::RunAll() {
}
}
void
NodePassManager
::
RunAll
()
{
PADDLE_ENFORCE
(
argument_
);
PADDLE_ENFORCE
(
argument_
->
main_dfg
.
get
());
auto
trait
=
GraphTraits
<
DataFlowGraph
>
(
*
argument_
->
main_dfg
).
nodes_in_DFS
();
for
(
auto
&
node
:
trait
)
{
for
(
auto
&
pass
:
data_
)
{
pass
->
Run
(
&
node
);
}
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/pass_manager.h
浏览文件 @
06180779
...
...
@@ -33,7 +33,7 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/
analysis_
pass.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -43,7 +43,7 @@ namespace analysis {
* PassManager is the base class for all pass managers, a pass manager has
* several Pass-es registered, and execute them in the linear order.
*/
class
PassManager
:
public
OrderedRegistry
<
Pass
>
{
class
PassManager
:
public
OrderedRegistry
<
Analysis
Pass
>
{
public:
PassManager
()
=
default
;
// Call all the passes' Initialize methods. The desc and data_flow_graph are
...
...
@@ -89,18 +89,6 @@ class DfgPassManager : public PassManager {
virtual
~
DfgPassManager
()
=
default
;
};
/*
* A pass manager that process a Node each time.
*/
class
NodePassManager
:
public
PassManager
{
public:
NodePassManager
()
=
default
;
void
RunAll
()
override
;
virtual
~
NodePassManager
()
=
default
;
};
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/pass_manager_tester.cc
浏览文件 @
06180779
...
...
@@ -34,28 +34,6 @@ class TestDfgPassManager final : public DfgPassManager {
std
::
string
description
()
const
override
{
return
"test doc"
;
}
};
class
TestNodePassManager
final
:
public
NodePassManager
{
public:
virtual
~
TestNodePassManager
()
=
default
;
std
::
string
repr
()
const
override
{
return
"test-node-pass-manager"
;
}
std
::
string
description
()
const
override
{
return
"test doc"
;
}
};
class
TestNodePass
final
:
public
NodePass
{
public:
virtual
~
TestNodePass
()
=
default
;
bool
Initialize
(
Argument
*
argument
)
override
{
return
true
;
}
void
Run
(
Node
*
node
)
override
{
LOG
(
INFO
)
<<
"- Processing node "
<<
node
->
repr
();
}
std
::
string
repr
()
const
override
{
return
"test-node"
;
}
std
::
string
description
()
const
override
{
return
"some doc"
;
}
};
TEST
(
PassManager
,
DFG_pass_manager
)
{
TestDfgPassManager
manager
;
DFG_GraphvizDrawPass
::
Config
config
(
"./"
,
"dfg.dot"
);
...
...
@@ -71,19 +49,6 @@ TEST(PassManager, DFG_pass_manager) {
manager
.
RunAll
();
}
TEST
(
PassManager
,
Node_pass_manager
)
{
Argument
argument
(
FLAGS_inference_model_dir
);
// Pre-process: initialize the DFG with the ProgramDesc first.
FluidToDataFlowGraphPass
pass0
;
pass0
.
Initialize
(
&
argument
);
pass0
.
Run
(
argument
.
main_dfg
.
get
());
TestNodePassManager
manager
;
manager
.
Register
(
"test-node-pass"
,
new
TestNodePass
);
ASSERT_TRUE
(
manager
.
Initialize
(
&
argument
));
manager
.
RunAll
();
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc
浏览文件 @
06180779
...
...
@@ -68,7 +68,7 @@ class DfgDebuggerPass : public DFG_GraphvizDrawPass {
}
};
Pass
*
TensorRTSubgraphNodeMarkPass
::
CreateGraphvizDebugerPass
()
const
{
Analysis
Pass
*
TensorRTSubgraphNodeMarkPass
::
CreateGraphvizDebugerPass
()
const
{
DFG_GraphvizDrawPass
::
Config
config
(
FLAGS_IA_graphviz_log_root
,
"tensorrt_marked_node"
);
return
new
DfgDebuggerPass
(
config
);
...
...
paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h
浏览文件 @
06180779
...
...
@@ -20,7 +20,7 @@
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/
analysis_
pass.h"
#include "paddle/fluid/inference/analysis/subgraph_splitter.h"
namespace
paddle
{
...
...
@@ -48,7 +48,7 @@ class TensorRTSubgraphNodeMarkPass : public DataFlowGraphPass {
return
"tensorrt sub-graph mark pass"
;
}
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
Analysis
Pass
*
CreateGraphvizDebugerPass
()
const
override
;
bool
Finalize
()
override
;
private:
...
...
paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h
浏览文件 @
06180779
...
...
@@ -15,8 +15,8 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/node.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/subgraph_splitter.h"
namespace
paddle
{
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
06180779
...
...
@@ -44,20 +44,7 @@ function(inference_api_test TARGET_NAME)
endfunction
(
inference_api_test
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api
analysis
ir_pass_manager
pass
fc_fuse_pass
fc_lstm_fuse_pass
fc_gru_fuse_pass
seq_concat_fc_fuse_pass
graph_viz_pass
infer_clean_graph_pass
graph_pattern_detector
infer_clean_graph_pass
attention_lstm_fuse_pass
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis
)
cc_test
(
test_paddle_inference_api
SRCS api_tester.cc
...
...
@@ -74,7 +61,7 @@ cc_library(paddle_inference_tensorrt_subgraph_engine
inference_api_test
(
test_api_tensorrt_subgraph_engine SRC api_tensorrt_subgraph_engine_tester.cc ARGS test_word2vec
)
endif
()
if
(
WITH_ANAKIN AND WITH_
GPU
)
# only needed in CI
if
(
WITH_ANAKIN AND WITH_
MKL
)
# only needed in CI
# compile the libinference_anakin_api.a and anakin.so.
cc_library
(
inference_anakin_api SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber mklml
)
cc_library
(
inference_anakin_api_shared SHARED SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber
)
...
...
@@ -84,12 +71,24 @@ if (WITH_ANAKIN AND WITH_GPU) # only needed in CI
anakin_target
(
inference_anakin_api
)
anakin_target
(
inference_anakin_api_shared
)
if
(
WITH_TESTING
)
cc_test
(
api_anakin_engine_tester SRCS api_anakin_engine_tester.cc
ARGS --model=
${
ANAKIN_SOURCE_DIR
}
/mobilenet_v2.anakin.bin
DEPS inference_anakin_api_shared dynload_cuda SERIAL
)
# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later.
set
(
INFERENCE_URL
"http://paddle-inference-dist.bj.bcebos.com"
)
set
(
ANAKIN_RNN_MODLE_URL
"
${
INFERENCE_URL
}
/anakin_test%2Fditu_rnn.anakin2.model.bin"
)
set
(
ANAKIN_RNN_DATA_URL
"
${
INFERENCE_URL
}
/anakin_test%2Fditu_rnn_data.txt"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
ANAKIN_SOURCE_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_RNN_MODLE_URL
}
-N"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_RNN_DATA_URL
}
-N"
)
if
(
WITH_GPU
)
set
(
anakin_test_extra_deps dynload_cuda
)
set
(
ANAKIN_MODLE_URL
"
${
INFERENCE_URL
}
/mobilenet_v2.anakin.bin"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_SOURCE_DIR
}
; wget -q --no-check-certificate
${
ANAKIN_MODLE_URL
}
-N"
)
cc_test
(
api_anakin_engine_tester SRCS api_anakin_engine_tester.cc
ARGS --model=
${
ANAKIN_SOURCE_DIR
}
/mobilenet_v2.anakin.bin
DEPS inference_anakin_api_shared
${
anakin_test_extra_deps
}
SERIAL
)
endif
()
cc_test
(
api_anakin_engine_rnn_tester SRCS api_anakin_engine_rnn_tester.cc
ARGS --model=
${
ANAKIN_SOURCE_DIR
}
/anakin_test%2Fditu_rnn.anakin2.model.bin
--datapath=
${
ANAKIN_SOURCE_DIR
}
/anakin_test%2Fditu_rnn_data.txt
DEPS inference_anakin_api_shared
dynload_cuda
SERIAL
)
DEPS inference_anakin_api_shared
${
anakin_test_extra_deps
}
SERIAL
)
endif
(
WITH_TESTING
)
endif
()
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
06180779
...
...
@@ -48,7 +48,6 @@ bool AnalysisPredictor::Init(
}
else
{
place_
=
paddle
::
platform
::
CPUPlace
();
}
PADDLE_ENFORCE
(
!
parent_scope
);
if
(
parent_scope
)
{
scope_
=
parent_scope
;
sub_scope_
=
&
(
parent_scope
->
NewScope
());
...
...
paddle/fluid/inference/api/api_anakin_engine.cc
浏览文件 @
06180779
...
...
@@ -193,7 +193,9 @@ PaddleInferenceAnakinPredictor<Target>::Clone() {
return
std
::
move
(
cls
);
}
#ifdef PADDLE_WITH_CUDA
template
class
PaddleInferenceAnakinPredictor
<
anakin
::
NV
>;
#endif
template
class
PaddleInferenceAnakinPredictor
<
anakin
::
X86
>;
// A factory to help create difference predictor.
...
...
@@ -202,10 +204,15 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnakinConfig
,
PaddleEngineKind
::
kAnakin
>
(
const
AnakinConfig
&
config
)
{
VLOG
(
3
)
<<
"Anakin Predictor create."
;
if
(
config
.
target_type
==
AnakinConfig
::
NVGPU
)
{
#ifdef PADDLE_WITH_CUDA
VLOG
(
3
)
<<
"Anakin Predictor create on [ NVIDIA GPU ]."
;
std
::
unique_ptr
<
PaddlePredictor
>
x
(
new
PaddleInferenceAnakinPredictor
<
anakin
::
NV
>
(
config
));
return
x
;
#else
LOG
(
ERROR
)
<<
"AnakinConfig::NVGPU could not used in ONLY-CPU environment"
;
return
nullptr
;
#endif
}
else
if
(
config
.
target_type
==
AnakinConfig
::
X86
)
{
VLOG
(
3
)
<<
"Anakin Predictor create on [ Intel X86 ]."
;
std
::
unique_ptr
<
PaddlePredictor
>
x
(
...
...
paddle/fluid/inference/api/helper.h
浏览文件 @
06180779
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <glog/logging.h>
#include <sys/time.h>
#include <algorithm>
#include <numeric>
...
...
@@ -88,5 +89,45 @@ static void TensorAssignData(PaddleTensor *tensor,
}
}
std
::
string
DescribeTensor
(
const
PaddleTensor
&
tensor
)
{
std
::
stringstream
os
;
os
<<
"Tensor ["
<<
tensor
.
name
<<
"]
\n
"
;
os
<<
" - type: "
;
switch
(
tensor
.
dtype
)
{
case
PaddleDType
::
FLOAT32
:
os
<<
"float32"
;
break
;
case
PaddleDType
::
INT64
:
os
<<
"int64"
;
break
;
default:
os
<<
"unset"
;
}
os
<<
'\n'
;
os
<<
" - shape: "
<<
to_string
(
tensor
.
shape
)
<<
'\n'
;
os
<<
" - lod: "
;
for
(
auto
&
l
:
tensor
.
lod
)
{
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
}
void
PrintTime
(
int
batch_size
,
int
repeat
,
int
num_threads
,
int
tid
,
double
latency
)
{
LOG
(
INFO
)
<<
"batch_size: "
<<
batch_size
<<
", repeat: "
<<
repeat
<<
", threads: "
<<
num_threads
<<
", thread id: "
<<
tid
<<
", latency: "
<<
latency
<<
"ms"
;
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
06180779
...
...
@@ -119,7 +119,8 @@ struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
last_scale
,
const
framework
::
Tensor
&
iter
,
const
int
window_size
,
framework
::
Tensor
*
scales_arr
,
framework
::
Tensor
*
out_scale
)
{
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
const
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
T
*
scale_arr
=
scales_arr
->
mutable_data
<
T
>
(
gpu_place
);
T
*
out_scale_data
=
out_scale
->
mutable_data
<
T
>
(
gpu_place
);
...
...
paddle/fluid/operators/flatten_op.cc
浏览文件 @
06180779
...
...
@@ -157,6 +157,116 @@ class FlattenGradOp : public framework::OperatorBase {
}
};
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
class
Flatten2OpInferShape
:
public
FlattenOpInferShape
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
FlattenOpInferShape
::
operator
()(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output (XShape) of Flatten op should not be null."
);
const
auto
&
in_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
xshape_dims
(
in_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
in_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
"XShape"
);
}
};
class
Flatten2Op
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axis
=
Attr
<
int
>
(
"axis"
);
auto
in_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
const
auto
&
out_dims
=
FlattenOpInferShape
::
GetOutputShape
(
axis
,
in_dims
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
out_dims
;
attrs
[
"inplace"
]
=
false
;
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}},
{
"XShape"
,
{
Output
(
"XShape"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
Flatten2OpMaker
:
public
FlattenOpMaker
{
public:
void
Make
()
override
{
FlattenOpMaker
::
Make
();
AddOutput
(
"XShape"
,
"XShape is just used to store the shape and lod of X, which will "
"be used in FlattenGradOp."
)
.
AsIntermediate
();
}
};
class
Flatten2GradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"flatten2_grad"
);
grad_op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
class
Flatten2GradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"XShape"
),
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
context
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
context
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
};
class
Flatten2GradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
xshape_name
=
Input
(
"XShape"
);
auto
xshape_dims
=
scope
.
FindVar
(
xshape_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
false
;
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}},
{
"XShape"
,
{
xshape_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -167,3 +277,8 @@ REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
ops
::
FlattenOpInferShape
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
flatten_grad
,
ops
::
FlattenGradOp
,
ops
::
FlattenGradInferShape
);
REGISTER_OPERATOR
(
flatten2
,
ops
::
Flatten2Op
,
ops
::
Flatten2OpMaker
,
ops
::
Flatten2OpInferShape
,
ops
::
Flatten2GradOpMaker
);
REGISTER_OPERATOR
(
flatten2_grad
,
ops
::
Flatten2GradOp
,
ops
::
Flatten2GradInferShape
);
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
06180779
...
...
@@ -30,14 +30,7 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
"Input(WeightX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
"Input(WeightH) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedOut"
),
"Output(BatchedOut) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of GRU should not be null."
);
...
...
@@ -80,15 +73,20 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedOut"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
int
xx_width
;
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_seq"
))
{
xx_width
=
wx_dims
[
1
];
}
else
{
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ReorderedH0"
),
"Output(ReorderedH0) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedInput"
),
"Output(BatchedInput) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedOut"
),
"Output(BatchedOut) of GRU should not be null."
);
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedOut"
,
out_dims
);
}
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
...
...
paddle/fluid/operators/fusion_lstm_op.cc
浏览文件 @
06180779
此差异已折叠。
点击以展开。
paddle/fluid/operators/layer_norm_op.cu
浏览文件 @
06180779
...
...
@@ -67,27 +67,27 @@ template <typename T, int BlockDim>
__global__
void
LayerNormForward
(
const
T
*
x
,
const
T
*
scale
,
const
T
*
bias
,
T
*
y
,
T
*
mean
,
T
*
var
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
double
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
// Step 1: Reduce to calculate mean and var
T
mean_val
=
static_cast
<
T
>
(
0
)
;
T
var_val
=
static_cast
<
T
>
(
0
)
;
double
mean_val
=
0
;
double
var_val
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
tmp
=
x
[
i
];
mean_val
+=
tmp
;
var_val
+=
(
tmp
*
tmp
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
mean_val
,
var_val
),
PairForLayerNormAddFunctor
<
T
>
());
.
Reduce
(
PairForLayerNorm
<
double
>
(
mean_val
,
var_val
),
PairForLayerNormAddFunctor
<
double
>
());
if
(
threadIdx
.
x
==
0
)
{
auto
tmp
=
pair
.
first_
/
feature_size
;
mean
[
blockIdx
.
x
]
=
tmp
;
var
[
blockIdx
.
x
]
=
pair
.
second_
/
feature_size
-
tmp
*
tmp
;
mean
[
blockIdx
.
x
]
=
static_cast
<
T
>
(
tmp
)
;
var
[
blockIdx
.
x
]
=
static_cast
<
T
>
(
pair
.
second_
/
feature_size
-
tmp
*
tmp
)
;
}
__syncthreads
();
mean_val
=
mean
[
blockIdx
.
x
];
...
...
paddle/fluid/operators/reshape_op.cc
浏览文件 @
06180779
...
...
@@ -246,6 +246,88 @@ class ReshapeGradKernel {
}
};
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class
Reshape2Op
:
public
ReshapeOp
{
public:
Reshape2Op
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ReshapeOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ReshapeOp
::
InferShape
(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) of ReshapeOp should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
};
class
Reshape2OpMaker
:
public
ReshapeOpMaker
{
public:
void
Make
()
override
{
ReshapeOpMaker
::
Make
();
AddOutput
(
"XShape"
,
"XShape is just used to store the shape and lod of X, which will "
"be used in FlattenGradOp."
)
.
AsIntermediate
();
}
};
class
Reshape2GradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"reshape2_grad"
);
grad_op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
class
Reshape2GradOp
:
public
framework
::
OperatorWithKernel
{
public:
Reshape2GradOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"XShape"
),
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
ctx
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
()),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
...
...
@@ -261,6 +343,17 @@ REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
ops
::
ReshapeGradKernel
,
int64_t
,
ops
::
ReshapeGradKernel
);
REGISTER_OPERATOR
(
reshape2
,
ops
::
Reshape2Op
,
ops
::
Reshape2OpMaker
,
ops
::
Reshape2GradMaker
);
REGISTER_OPERATOR
(
reshape2_grad
,
ops
::
Reshape2GradOp
);
REGISTER_OP_CPU_KERNEL_FUNCTOR
(
reshape2
,
float
,
ops
::
ReshapeKernel
,
double
,
ops
::
ReshapeKernel
,
int
,
ops
::
ReshapeKernel
,
int64_t
,
ops
::
ReshapeKernel
);
REGISTER_OP_CPU_KERNEL_FUNCTOR
(
reshape2_grad
,
float
,
ops
::
ReshapeGradKernel
,
double
,
ops
::
ReshapeGradKernel
,
int
,
ops
::
ReshapeGradKernel
,
int64_t
,
ops
::
ReshapeGradKernel
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
reshape
,
float
,
ops
::
ReshapeKernel
,
double
,
ops
::
ReshapeKernel
,
int
,
ops
::
ReshapeKernel
,
...
...
@@ -269,4 +362,11 @@ REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
double
,
ops
::
ReshapeGradKernel
,
int
,
ops
::
ReshapeGradKernel
,
int64_t
,
ops
::
ReshapeGradKernel
);
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
reshape2
,
float
,
ops
::
ReshapeKernel
,
double
,
ops
::
ReshapeKernel
,
int
,
ops
::
ReshapeKernel
,
int64_t
,
ops
::
ReshapeKernel
);
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
reshape2_grad
,
float
,
ops
::
ReshapeGradKernel
,
double
,
ops
::
ReshapeGradKernel
,
int
,
ops
::
ReshapeGradKernel
,
int64_t
,
ops
::
ReshapeGradKernel
);
#endif
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
06180779
...
...
@@ -126,15 +126,15 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
({});
AddComment
(
R"DOC(
Squeeze Operator.
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter axes with a list of axes to squeeze.
If axes is not provided, all the single dimensions will be removed from the shape.
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter axes with a list of axes to squeeze.
If axes is not provided, all the single dimensions will be removed from the shape.
If an axis is selected with shape entry not equal to one, an error is raised.
Examples:
Case 1:
Given
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
...
...
@@ -144,7 +144,7 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
and
axes = []
we get:
Out.shape = (3, 5)
...
...
@@ -181,6 +181,113 @@ class SqueezeGradOp : public framework::OperatorBase {
}
};
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class
Squeeze2OpMaker
:
public
SqueezeOpMaker
{
public:
void
Make
()
override
{
SqueezeOpMaker
::
Make
();
AddOutput
(
"XShape"
,
"XShape is just used to store the shape and lod of X, which will "
"be used in SqueezeGradOp."
)
.
AsIntermediate
();
}
};
class
Squeeze2OpInferShape
:
public
SqueezeOpInferShape
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
SqueezeOpInferShape
::
operator
()(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) of Squeeze operator should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
};
class
Squeeze2Op
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
Squeeze2OpInferShape
::
GetOutputShape
(
axes
,
x_dims
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}},
{
"XShape"
,
{
Output
(
"XShape"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
Squeeze2GradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"squeeze2_grad"
);
grad_op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
class
Squeeze2GradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"XShape"
),
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
context
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
context
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
};
class
Squeeze2GradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
xshape_name
=
Input
(
"XShape"
);
auto
xshape_dims
=
scope
.
FindVar
(
xshape_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}},
{
"XShape"
,
{
xshape_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -192,3 +299,8 @@ REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
ops
::
SqueezeOpInferShape
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
squeeze_grad
,
ops
::
SqueezeGradOp
,
ops
::
SqueezeGradInferShape
);
REGISTER_OPERATOR
(
squeeze2
,
ops
::
Squeeze2Op
,
ops
::
Squeeze2OpMaker
,
ops
::
Squeeze2OpInferShape
,
ops
::
Squeeze2GradOpMaker
);
REGISTER_OPERATOR
(
squeeze2_grad
,
ops
::
Squeeze2GradOp
,
ops
::
Squeeze2GradInferShape
);
paddle/fluid/operators/transpose_op.cc
浏览文件 @
06180779
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/transpose_op.h"
#include <string>
#include <vector>
namespace
paddle
{
...
...
@@ -24,7 +25,7 @@ class TransposeOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -90,7 +91,7 @@ The behavior of this operator is similar to how `numpy.transpose` works.
2 &5
\end{pmatrix}$$
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
)DOC"
);
...
...
@@ -101,7 +102,7 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
...
...
@@ -113,6 +114,93 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
}
};
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class
Transpose2Op
:
public
TransposeOp
{
public:
Transpose2Op
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
TransposeOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
TransposeOp
::
InferShape
(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) should not be null"
);
const
auto
&
in_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
x_shape_dim
(
in_dims
.
size
()
+
1
);
x_shape_dim
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
x_shape_dim
[
i
+
1
]
=
in_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
x_shape_dim
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
Transpose2OpMaker
:
public
TransposeOpMaker
{
public:
void
Make
()
override
{
TransposeOpMaker
::
Make
();
AddOutput
(
"XShape"
,
"(Tensor)The output tensor."
).
AsIntermediate
();
}
};
class
Transpose2GradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"transpose2_grad"
);
grad_op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
class
Transpose2OpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"XShape"
),
"Input(XShape) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
auto
xshape_dim
=
ctx
->
GetInputDim
(
"XShape"
);
auto
x_shape_dim
=
framework
::
slice_ddim
(
xshape_dim
,
1
,
xshape_dim
.
size
());
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_shape_dim
);
ctx
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
()),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -120,8 +208,20 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
transpose
,
ops
::
TransposeOp
,
ops
::
TransposeOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
transpose_grad
,
ops
::
TransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
transpose
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
transpose_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OPERATOR
(
transpose2
,
ops
::
Transpose2Op
,
ops
::
Transpose2OpMaker
,
ops
::
Transpose2GradMaker
);
REGISTER_OPERATOR
(
transpose2_grad
,
ops
::
Transpose2OpGrad
);
REGISTER_OP_CPU_KERNEL
(
transpose2
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
transpose2_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/transpose_op.cu.cc
浏览文件 @
06180779
...
...
@@ -21,3 +21,10 @@ REGISTER_OP_CUDA_KERNEL(
REGISTER_OP_CUDA_KERNEL
(
transpose_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
transpose2
,
ops
::
TransposeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
transpose2_grad
,
ops
::
TransposeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/unsqueeze_op.cc
浏览文件 @
06180779
...
...
@@ -127,13 +127,13 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddComment
(
R"DOC(
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
)DOC"
);
}
...
...
@@ -168,6 +168,112 @@ class UnsqueezeGradOp : public framework::OperatorBase {
}
};
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
class
Unsqueeze2OpInferShape
:
public
UnsqueezeOpInferShape
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
UnsqueezeOpInferShape
::
operator
()(
ctx
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XShape"
),
"Output(XShape) of Unsqueeze operator should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
ctx
->
SetOutputDim
(
"XShape"
,
framework
::
make_ddim
(
xshape_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"XShape"
);
}
};
class
Unsqueeze2OpMaker
:
public
UnsqueezeOpMaker
{
public:
void
Make
()
override
{
UnsqueezeOpMaker
::
Make
();
AddOutput
(
"XShape"
,
"XShape is just used to store the shape and lod of X, which will "
"be used in UnsqueezeGradOp."
)
.
AsIntermediate
();
}
};
class
Unsqueeze2Op
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
Unsqueeze2OpInferShape
::
GetOutputShape
(
axes
,
x_dims
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
// Invoke Reshape op.
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
Output
(
"Out"
)}},
{
"XShape"
,
{
Output
(
"XShape"
)}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
class
Unsqueeze2GradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"unsqueeze2_grad"
);
grad_op
->
SetInput
(
"XShape"
,
Output
(
"XShape"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
class
Unsqueeze2GradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"XShape"
),
"Input(XShape) shouldn't be null."
);
PADDLE_ENFORCE
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
xshape_dims
=
context
->
GetInputDim
(
"XShape"
);
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
context
->
ShareLoD
(
"XShape"
,
framework
::
GradVarName
(
"X"
));
}
};
class
Unsqueeze2GradOp
:
public
framework
::
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
dx_name
=
Output
(
framework
::
GradVarName
(
"X"
));
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
xshape_name
=
Input
(
"XShape"
);
auto
xshape_dims
=
scope
.
FindVar
(
xshape_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}},
{
"XShape"
,
{
xshape_name
}}},
attrs
);
reshape_op
->
Run
(
scope
,
place
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -180,3 +286,8 @@ REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
unsqueeze_grad
,
ops
::
UnsqueezeGradOp
,
ops
::
UnsqueezeGradInferShape
);
REGISTER_OPERATOR
(
unsqueeze2
,
ops
::
Unsqueeze2Op
,
ops
::
Unsqueeze2OpMaker
,
ops
::
Unsqueeze2OpInferShape
,
ops
::
Unsqueeze2GradOpMaker
);
REGISTER_OPERATOR
(
unsqueeze2_grad
,
ops
::
Unsqueeze2GradOp
,
ops
::
Unsqueeze2GradInferShape
);
paddle/fluid/platform/dynload/dynamic_loader.cc
浏览文件 @
06180779
...
...
@@ -121,6 +121,12 @@ static inline void* GetDsoHandleFromSearchPath(const std::string& search_root,
if
(
nullptr
==
dso_handle
)
{
LOG
(
WARNING
)
<<
"Failed to find dynamic library: "
<<
dlPath
<<
" ("
<<
dlerror
()
<<
")"
;
if
(
dlPath
.
find
(
"nccl"
)
!=
std
::
string
::
npos
)
{
std
::
cout
<<
"You may need to install 'nccl2' from NVIDIA official website: "
<<
"https://developer.nvidia.com/nccl/nccl-download"
<<
"before install PaddlePaddle"
<<
std
::
endl
;
}
dlPath
=
dso_name
;
dso_handle
=
GetDsoHandleFromDefaultPath
(
dlPath
,
dynload_flags
);
}
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
06180779
...
...
@@ -115,6 +115,7 @@ function cmake_gen() {
-DWITH_FLUID_ONLY=
${
WITH_FLUID_ONLY
:-
OFF
}
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_CONTRIB=
${
WITH_CONTRIB
:-
ON
}
-DWITH_INFERENCE=
${
WITH_INFERENCE
:-
ON
}
-DWITH_ANAKIN=
${
WITH_ANAKIN
:-
OFF
}
-DPY_VERSION=
${
PY_VERSION
:-
2
.7
}
========================================
...
...
@@ -144,6 +145,7 @@ EOF
-DWITH_FLUID_ONLY
=
${
WITH_FLUID_ONLY
:-
OFF
}
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DWITH_CONTRIB
=
${
WITH_CONTRIB
:-
ON
}
\
-DWITH_INFERENCE
=
${
WITH_INFERENCE
:-
ON
}
\
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
OFF
}
\
-DPY_VERSION
=
${
PY_VERSION
:-
2
.7
}
}
...
...
@@ -498,7 +500,7 @@ EOF
EOF
if
[[
${
WITH_GPU
}
==
"ON"
]]
;
then
NCCL_DEPS
=
"apt-get install -y --allow-downgrades libnccl2=2.
1.2-1+cuda
${
CUDA_MAJOR
}
libnccl-dev=2.1.2
-1+cuda
${
CUDA_MAJOR
}
&&"
NCCL_DEPS
=
"apt-get install -y --allow-downgrades libnccl2=2.
2.13-1+cuda
${
CUDA_MAJOR
}
libnccl-dev=2.2.13
-1+cuda
${
CUDA_MAJOR
}
&&"
else
NCCL_DEPS
=
""
fi
...
...
python/paddle/dataset/image.py
浏览文件 @
06180779
...
...
@@ -104,7 +104,7 @@ def batch_images_from_tar(data_file,
pickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'wb'
),
protocol
=
pickle
.
HIGHEST_PROTOCOL
)
protocol
=
2
)
file_id
+=
1
data
=
[]
labels
=
[]
...
...
@@ -113,9 +113,7 @@ def batch_images_from_tar(data_file,
output
[
'label'
]
=
labels
output
[
'data'
]
=
data
pickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'wb'
),
protocol
=
pickle
.
HIGHEST_PROTOCOL
)
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'wb'
),
protocol
=
2
)
with
open
(
meta_file
,
'a'
)
as
meta
:
for
file
in
os
.
listdir
(
out_path
):
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
06180779
...
...
@@ -4025,10 +4025,12 @@ def transpose(x, perm, name=None):
helper
=
LayerHelper
(
'transpose'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
x_shape
=
helper
.
create_tmp_variable
(
x
.
dtype
)
helper
.
append_op
(
type
=
'transpose'
,
type
=
'transpose
2
'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]},
outputs
=
{
'Out'
:
[
out
],
'XShape'
:
[
x_shape
]},
attrs
=
{
'axis'
:
perm
})
return
out
...
...
@@ -4520,13 +4522,15 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
"Each dimension size given in shape must not be negtive "
"except one unknown dimension."
)
helper
=
LayerHelper
(
"reshape"
,
**
locals
())
helper
=
LayerHelper
(
"reshape
2
"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
x_shape
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"reshape"
,
type
=
"reshape
2
"
,
inputs
=
inputs
,
attrs
=
{
"shape"
:
shape
},
outputs
=
{
"Out"
:
out
})
outputs
=
{
"Out"
:
out
,
"XShape"
:
x_shape
})
return
helper
.
append_activation
(
out
)
...
...
@@ -4570,11 +4574,13 @@ def squeeze(input, axes, name=None):
"""
helper
=
LayerHelper
(
"squeeze"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
"squeeze"
,
type
=
"squeeze
2
"
,
inputs
=
{
"X"
:
input
},
attrs
=
{
"axes"
:
axes
},
outputs
=
{
"Out"
:
out
})
outputs
=
{
"Out"
:
out
,
"XShape"
:
x_shape
})
return
out
...
...
@@ -4605,11 +4611,13 @@ def unsqueeze(input, axes, name=None):
"""
helper
=
LayerHelper
(
"unsqueeze"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
"unsqueeze"
,
type
=
"unsqueeze
2
"
,
inputs
=
{
"X"
:
input
},
attrs
=
{
"axes"
:
axes
},
outputs
=
{
"Out"
:
out
})
outputs
=
{
"Out"
:
out
,
"XShape"
:
x_shape
})
return
out
...
...
@@ -5811,10 +5819,12 @@ def flatten(x, axis=1, name=None):
raise
ValueError
(
"The axis should be a int, and in range [0, rank(x)]"
)
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
x_shape
=
helper
.
create_tmp_variable
(
x
.
dtype
)
helper
.
append_op
(
type
=
'flatten'
,
type
=
'flatten
2
'
,
inputs
=
{
"X"
:
x
},
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
out
,
'XShape'
:
x_shape
},
attrs
=
{
"axis"
:
axis
})
return
out
...
...
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
06180779
...
...
@@ -47,14 +47,14 @@ def train_program():
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
return
[
avg_loss
,
y_predict
]
def
optimizer_func
():
return
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
def
train
(
use_cuda
,
train_program
,
params_dirname
):
def
train
(
use_cuda
,
train_program
,
params_dirname
,
inference_model_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
...
...
@@ -74,6 +74,8 @@ def train(use_cuda, train_program, params_dirname):
'''
if
params_dirname
is
not
None
:
trainer
.
save_params
(
params_dirname
)
trainer
.
save_inference_model
(
inference_model_dirname
,
[
'x'
],
[
1
])
trainer
.
stop
()
trainer
.
train
(
...
...
@@ -99,15 +101,55 @@ def infer(use_cuda, inference_program, params_dirname=None):
print
(
"infer results: "
,
results
[
0
])
def
infer_by_saved_model
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size
=
10
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
test
(),
batch_size
=
batch_size
)
test_data
=
next
(
test_reader
())
test_feat
=
numpy
.
array
(
[
data
[
0
]
for
data
in
test_data
]).
astype
(
"float32"
)
test_label
=
numpy
.
array
(
[
data
[
1
]
for
data
in
test_data
]).
astype
(
"float32"
)
assert
feed_target_names
[
0
]
==
'x'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
numpy
.
array
(
test_feat
)},
fetch_list
=
fetch_targets
)
print
(
"infer shape: "
,
results
[
0
].
shape
)
print
(
"infer results: "
,
results
[
0
])
print
(
"ground truth: "
,
test_label
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
# Directory for saving the trained model
params_dirname
=
"fit_a_line.inference.model"
params_dirname
=
"fit_a_line.model"
inference_model_dirname
=
"fit_a_line.inference_model"
train
(
use_cuda
,
train_program
,
params_dirname
)
train
(
use_cuda
,
train_program
,
params_dirname
,
inference_model_dirname
)
infer
(
use_cuda
,
inference_program
,
params_dirname
)
infer_by_saved_model
(
use_cuda
,
inference_model_dirname
)
class
TestFitALine
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
06180779
...
...
@@ -36,6 +36,7 @@ import paddle.fluid as fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid
import
core
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.compat
as
cpt
from
paddle.compat
import
long_type
import
hashlib
...
...
@@ -315,8 +316,9 @@ def pad_batch_data(insts,
"""
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
num_token
=
reduce
(
lambda
x
,
y
:
x
+
y
,
[
len
(
inst
)
for
inst
in
insts
])
if
return_num_token
else
0
num_token
=
six
.
moves
.
reduce
(
lambda
x
,
y
:
x
+
y
,
[
len
(
inst
)
for
inst
in
insts
])
if
return_num_token
else
0
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data
=
np
.
array
(
...
...
@@ -328,7 +330,7 @@ def pad_batch_data(insts,
return_list
+=
[
inst_weight
.
astype
(
"float32"
).
reshape
([
-
1
,
1
])]
else
:
# position data
inst_pos
=
np
.
array
([
range
(
1
,
len
(
inst
)
+
1
)
+
[
0
]
*
(
max_len
-
len
(
inst
))
list
(
range
(
1
,
len
(
inst
)
+
1
)
)
+
[
0
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
...
...
@@ -385,10 +387,11 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
return_num_token
=
True
)
data_input_dict
=
dict
(
zip
(
data_input_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]))
list
(
zip
(
data_input_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
])))
return
data_input_dict
,
np
.
asarray
([
num_token
],
dtype
=
"float32"
)
...
...
@@ -561,7 +564,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
np
.
log
(
TrainTaskConfig
.
label_smooth_eps
/
(
ModelHyperParams
.
trg_vocab_size
-
1
)
+
1e-20
))
init
=
False
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_data
()):
if
batch_id
>=
5
:
...
...
@@ -587,11 +590,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
total_num_token
+=
num_token
feed_kv_pairs
=
data_input_dict
.
items
(
)
feed_kv_pairs
=
list
(
data_input_dict
.
items
()
)
if
TrainTaskConfig
.
local
:
feed_kv_pairs
+=
{
feed_kv_pairs
+=
list
(
{
lr_scheduler
.
learning_rate
.
name
:
lr_rate
}.
items
()
}.
items
()
)
feed_list
.
append
(
dict
(
feed_kv_pairs
))
if
not
init
:
...
...
@@ -873,6 +876,7 @@ class DataReader(object):
f
=
tarfile
.
open
(
fpaths
[
0
],
"r"
)
for
line
in
f
.
extractfile
(
tar_fname
):
line
=
cpt
.
to_text
(
line
)
fields
=
line
.
strip
(
"
\n
"
).
split
(
self
.
_field_delimiter
)
if
(
not
self
.
_only_src
and
len
(
fields
)
==
2
)
or
(
self
.
_only_src
and
len
(
fields
)
==
1
):
...
...
@@ -882,8 +886,9 @@ class DataReader(object):
if
not
os
.
path
.
isfile
(
fpath
):
raise
IOError
(
"Invalid file: %s"
%
fpath
)
with
open
(
fpath
,
"r"
)
as
f
:
with
open
(
fpath
,
"r
b
"
)
as
f
:
for
line
in
f
:
line
=
cpt
.
to_text
(
line
)
fields
=
line
.
strip
(
"
\n
"
).
split
(
self
.
_field_delimiter
)
if
(
not
self
.
_only_src
and
len
(
fields
)
==
2
)
or
(
self
.
_only_src
and
len
(
fields
)
==
1
):
...
...
@@ -892,8 +897,9 @@ class DataReader(object):
@
staticmethod
def
load_dict
(
dict_path
,
reverse
=
False
):
word_dict
=
{}
with
open
(
dict_path
,
"r"
)
as
fdict
:
with
open
(
dict_path
,
"r
b
"
)
as
fdict
:
for
idx
,
line
in
enumerate
(
fdict
):
line
=
cpt
.
to_text
(
line
)
if
reverse
:
word_dict
[
idx
]
=
line
.
strip
(
"
\n
"
)
else
:
...
...
@@ -1034,7 +1040,7 @@ def multi_head_attention(queries,
# size of the input as the output dimension size.
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
0
,
0
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]
))
shape
=
list
(
map
(
int
,
[
0
,
0
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]])
))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_model
,
dropout_rate
):
"""
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
06180779
...
...
@@ -249,7 +249,7 @@ class OpTest(unittest.TestCase):
outs
,
_
=
self
.
_calc_output
(
place
)
return
outs
def
_calc_output
(
self
,
place
,
parallel
=
False
):
def
_calc_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
program
=
Program
()
block
=
program
.
global_block
()
...
...
@@ -273,6 +273,8 @@ class OpTest(unittest.TestCase):
# if not, fill the fetch_list by the user configured outputs in test.
if
len
(
fetch_list
)
==
0
:
for
var_name
,
var
in
six
.
iteritems
(
outputs
):
if
no_check_set
is
not
None
and
var_name
in
no_check_set
:
continue
if
isinstance
(
var
,
list
):
for
v
in
var
:
fetch_list
.
append
(
v
)
...
...
@@ -291,11 +293,17 @@ class OpTest(unittest.TestCase):
return_numpy
=
False
)
return
outs
,
fetch_list
def
check_output_with_place
(
self
,
place
,
atol
,
equal_nan
=
False
):
outs
,
fetch_list
=
self
.
_calc_output
(
place
)
def
check_output_with_place
(
self
,
place
,
atol
,
no_check_set
=
None
,
equal_nan
=
False
):
outs
,
fetch_list
=
self
.
_calc_output
(
place
,
no_check_set
=
no_check_set
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
op_type
):
if
out_name
not
in
self
.
outputs
:
continue
if
no_check_set
is
not
None
and
out_name
in
no_check_set
:
continue
def
find_actual
(
target_name
,
fetch_list
):
found
=
[
...
...
@@ -360,10 +368,10 @@ class OpTest(unittest.TestCase):
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
check_output
(
self
,
atol
=
1e-5
,
equal_nan
=
False
):
def
check_output
(
self
,
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
):
places
=
self
.
_get_places
()
for
place
in
places
:
self
.
check_output_with_place
(
place
,
atol
,
equal_nan
)
self
.
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
)
def
check_output_customized
(
self
,
checker
):
places
=
self
.
_get_places
()
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
06180779
...
...
@@ -55,6 +55,7 @@ class TestDistRunnerBase(object):
pserver_prog
=
t
.
get_pserver_program
(
args
.
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
args
.
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
...
...
@@ -147,6 +148,8 @@ def runtime_main(test_class):
import
paddle.compat
as
cpt
import
socket
from
contextlib
import
closing
class
TestDistBase
(
unittest
.
TestCase
):
...
...
@@ -156,13 +159,19 @@ class TestDistBase(unittest.TestCase):
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
())
self
.
_python_interp
=
"python"
self
.
_sync_mode
=
True
self
.
_mem_opt
=
False
self
.
_use_reduce
=
False
self
.
_setup_config
()
def
_find_free_port
(
self
):
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
def
start_pserver
(
self
,
model_file
,
check_error_log
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps_cmd
=
"%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist"
...
...
python/paddle/fluid/tests/unittests/test_flatten_op.py
浏览文件 @
06180779
...
...
@@ -22,14 +22,17 @@ from op_test import OpTest
class
TestFlattenOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"flatten"
self
.
op_type
=
"flatten
2
"
self
.
init_test_case
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
in_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
"XShape"
:
np
.
random
.
random
(
self
.
in_shape
).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
"XShape"
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
...
...
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
浏览文件 @
06180779
...
...
@@ -53,12 +53,11 @@ class TestFusionLSTMOp(OpTest):
self
.
M
=
8
self
.
D
=
16
self
.
has_initial_state
=
False
self
.
use_peepholes
=
False
self
.
is_reverse
=
False
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
use_peepholes
=
False
self
.
use_seq
=
False
self
.
set_conf
()
T
=
sum
(
self
.
lod
[
0
])
...
...
@@ -108,7 +107,6 @@ class TestFusionLSTMOp(OpTest):
}
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'use_seq'
:
self
.
use_seq
,
'is_reverse'
:
self
.
is_reverse
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
...
...
@@ -178,50 +176,18 @@ class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp):
self
.
is_reverse
=
True
class
TestFusionLSTMOpP
oopholesBS1
(
TestFusionLSTMOp
):
class
TestFusionLSTMOpP
eepholesInitReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_peepholes
=
True
self
.
lod
=
[[
3
]]
self
.
D
=
16
class
TestFusionLSTMOpSeqInit
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
has_initial_state
=
True
class
TestFusionLSTMOpSeqReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
is_reverse
=
True
class
TestFusionLSTMOpSeqInitReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
has_initial_state
=
True
self
.
is_reverse
=
True
class
TestFusionLSTMOp
SeqPeepholes
(
TestFusionLSTMOp
):
class
TestFusionLSTMOp
PeepholesBS1
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
class
TestFusionLSTMOpSeqPeepholesInit
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
self
.
has_initial_state
=
True
class
TestFusionLSTMOpSeqPeepholesReverse
(
TestFusionLSTMOp
):
def
set_conf
(
self
):
self
.
use_seq
=
True
self
.
use_peepholes
=
True
self
.
is_reverse
=
True
self
.
lod
=
[[
2
]]
self
.
D
=
8
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
浏览文件 @
06180779
...
...
@@ -85,6 +85,7 @@ class TestFetchOp(unittest.TestCase):
assert
not
math
.
isnan
(
np
.
sum
(
ret
[
i
]))
and
\
not
math
.
isinf
(
np
.
sum
(
ret
[
i
]))
@
unittest
.
skip
(
reason
=
"CI timeout"
)
def
test_fetch_op
(
self
):
tst_reader
=
paddle
.
batch
(
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
16
)
tst_reader_iter
=
tst_reader
()
...
...
@@ -139,6 +140,7 @@ class TestFeedParallel(unittest.TestCase):
if
batch_id
==
2
:
break
@
unittest
.
skip
(
reason
=
"CI timeout"
)
def
test_feed_op
(
self
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
if
core
.
is_compiled_with_cuda
():
...
...
python/paddle/fluid/tests/unittests/test_prelu_op.py
浏览文件 @
06180779
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
six
from
op_test
import
OpTest
...
...
@@ -62,17 +63,20 @@ class PReluTest(OpTest):
# TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues
# class TestCase1(PReluTest):
# def initTestCase(self):
# self.attrs = {'mode': "all"}
if
six
.
PY2
:
# class TestCase2(PReluTest):
# def initTestCase(self):
# self.attrs = {'mode': "channel"}
class
TestCase1
(
PReluTest
):
def
initTestCase
(
self
):
self
.
attrs
=
{
'mode'
:
"all"
}
class
TestCase2
(
PReluTest
):
def
initTestCase
(
self
):
self
.
attrs
=
{
'mode'
:
"channel"
}
class
TestCase3
(
PReluTest
):
def
initTestCase
(
self
):
self
.
attrs
=
{
'mode'
:
"element"
}
# class TestCase3(PReluTest):
# def initTestCase(self):
# self.attrs = {'mode': "element"}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_reshape_op.py
浏览文件 @
06180779
...
...
@@ -22,106 +22,39 @@ from op_test import OpTest
class
TestReshapeOp
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
2
,
25
)
new_shape
=
(
5
,
10
)
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpDimInfer1
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
5
,
10
)
new_shape
=
(
5
,
-
1
,
5
)
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
attrs
[
"shape"
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpDimInfer2
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
2
,
2
,
6
)
new_shape
=
(
2
,
0
,
3
,
-
1
)
infered_shape
=
(
2
,
2
,
3
,
-
1
)
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
infered_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpInplace
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
2
,
25
)
new_shape
=
(
5
,
10
)
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpDimInferInplace1
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
5
,
10
)
new_shape
=
(
5
,
-
1
,
5
)
self
.
init_data
()
self
.
op_type
=
"reshape2"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
self
.
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
25
)
self
.
new_shape
=
(
5
,
10
)
self
.
infered_shape
=
(
5
,
10
)
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
'XShape'
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpDimInferInplace2
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
2
,
2
,
6
)
new_shape
=
(
2
,
0
,
3
,
-
1
)
infered_shape
=
(
2
,
2
,
3
,
-
1
)
self
.
op_type
=
"reshape"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
infered_shape
)}
class
TestReshapeOpDimInfer1
(
TestReshapeOp
):
def
init_data
(
self
):
self
.
ori_shape
=
(
5
,
10
)
self
.
new_shape
=
(
5
,
-
1
,
5
)
self
.
infered_shape
=
(
5
,
-
1
,
5
)
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestReshapeOpDimInfer2
(
TestReshapeOp
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
2
,
6
)
self
.
new_shape
=
(
2
,
0
,
3
,
-
1
)
self
.
infered_shape
=
(
2
,
2
,
3
,
-
1
)
class
TestReshapeOpWithInputShape
(
OpTest
):
...
...
@@ -130,20 +63,23 @@ class TestReshapeOpWithInputShape(OpTest):
new_shape
=
(
0
,
-
1
,
5
)
actual_shape
=
(
2
,
3
,
5
)
self
.
op_type
=
"reshape"
self
.
op_type
=
"reshape
2
"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
),
"Shape"
:
np
.
array
(
actual_shape
,
dtype
=
"int32"
)
}
self
.
attrs
=
{
"shape"
:
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
actual_shape
)}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
actual_shape
),
'XShape'
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
'XShape'
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
self
.
check_grad
([
"X"
],
"Out"
,
sum_outputs
=
[
"Out"
]
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_squeeze_op.py
浏览文件 @
06180779
...
...
@@ -23,14 +23,17 @@ from op_test import OpTest
# Correct: General.
class
TestSqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"squeeze"
self
.
op_type
=
"squeeze
2
"
self
.
init_test_case
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
"XShape"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
'XShape'
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
...
...
python/paddle/fluid/tests/unittests/test_transpose_op.py
浏览文件 @
06180779
...
...
@@ -22,16 +22,19 @@ from op_test import OpTest
class
TestTransposeOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
"transpose"
self
.
op_type
=
"transpose
2
"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
'axis'
:
list
(
self
.
axis
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)}
self
.
outputs
=
{
'XShape'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
),
'Out'
:
self
.
inputs
[
'X'
].
transpose
(
self
.
axis
)
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
'XShape'
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
sum_outputs
=
[
'Out'
]
)
def
initTestCase
(
self
):
self
.
shape
=
(
3
,
4
)
...
...
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
浏览文件 @
06180779
...
...
@@ -24,13 +24,16 @@ from op_test import OpTest
class
TestUnsqueezeOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
op_type
=
"unsqueeze"
self
.
op_type
=
"unsqueeze
2
"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
),
"XShape"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
no_check_set
=
[
"XShape"
]
)
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
...
...
python/paddle/fluid/trainer.py
浏览文件 @
06180779
...
...
@@ -431,6 +431,28 @@ class Trainer(object):
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
param_path
,
feeded_var_names
,
target_var_indexes
):
"""
Save model for cpp inference into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
feeded_var_names(list(str)): The name of the vars that you
need to feed in before run program.
target_var_indexes(list(int)): the index of target var that
you need to return in trainer.train_func.
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
target_vars
=
[
self
.
train_func_outputs
[
index
]
for
index
in
target_var_indexes
]
io
.
save_inference_model
(
param_path
,
feeded_var_names
,
target_vars
,
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
...
...
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
06180779
...
...
@@ -153,7 +153,7 @@ def block_to_code(block, block_idx):
indent
+=
1
# sort all vars
all_vars
=
sorted
(
block
.
vars
.
iteritems
(
),
key
=
lambda
x
:
x
[
0
])
all_vars
=
sorted
(
six
.
iteritems
(
block
.
vars
),
key
=
lambda
x
:
x
[
0
])
for
var
in
all_vars
:
print
(
"{}{}"
.
format
(
get_indent_space
(
indent
),
variable_to_code
(
var
[
1
])))
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
06180779
...
...
@@ -300,7 +300,7 @@ class DistributeTranspiler(object):
input_deps
=
grad_name_to_send_dummy_out
.
values
()
program
.
global_block
().
append_op
(
type
=
"send_barrier"
,
inputs
=
{
"X"
:
input_deps
},
inputs
=
{
"X"
:
list
(
input_deps
)
},
outputs
=
{
"Out"
:
send_barrier_out
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
...
...
@@ -401,7 +401,7 @@ class DistributeTranspiler(object):
Args:
recv_vars (list): Variable list to recv for current trainer_id
eplist (list): A list of strings indicating
eplist (list): A list of strings indicating
Returns:
Program: trainer side startup program.
...
...
@@ -455,7 +455,7 @@ class DistributeTranspiler(object):
if
len
(
splited_var
)
<=
1
:
continue
# NOTE: if enable memory optimization, origin vars maybe removed.
if
startup_program
.
global_block
().
vars
.
has_key
(
varname
)
:
if
varname
in
startup_program
.
global_block
().
vars
:
orig_param
=
startup_program
.
global_block
().
vars
[
varname
]
else
:
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
...
...
@@ -690,7 +690,7 @@ class DistributeTranspiler(object):
Args:
endpoint (str): current pserver endpoint.
Returns:
tuple: (main_program, startup_program), of type "Program"
"""
...
...
@@ -713,7 +713,7 @@ class DistributeTranspiler(object):
endpoint (str): current pserver endpoint.
pserver_program (Program): deprecated, call get_pserver_program first.
startup_program (Program): deprecated, should pass startup_program
when initalizing
when initalizing
Returns:
Program: parameter server side startup program.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录