diff --git a/CMakeLists.txt b/CMakeLists.txt index b1d0abdf2ceb4cf338dde782a97a6df906149655..c2fa5420e916fd5958f6198d6e97c9b1092b5aa1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -213,9 +213,11 @@ include(configure) # add paddle env configuration if(WITH_GPU) include(cuda) include(tensorrt) +endif() +if(WITH_MKL OR WITH_MKLML) include(external/anakin) elseif() - set(WITH_ANAKIN OFF CACHE STRING "Anakin is used in GPU only now." FORCE) + set(WITH_ANAKIN OFF CACHE STRING "Anakin is used in MKL only now." FORCE) endif() include(generic) # simplify cmake module diff --git a/cmake/external/anakin.cmake b/cmake/external/anakin.cmake index dc6730662f0b888f1981ac9c086320acc52d0a50..5a12c6490ecb22afc7f2152cb15028e5d2935dcb 100644 --- a/cmake/external/anakin.cmake +++ b/cmake/external/anakin.cmake @@ -16,16 +16,6 @@ set(ANAKIN_LIBRARY ${ANAKIN_INSTALL_DIR}) set(ANAKIN_SHARED_LIB ${ANAKIN_LIBRARY}/libanakin.so) set(ANAKIN_SABER_LIB ${ANAKIN_LIBRARY}/libanakin_saber_common.so) -# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later. -set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com") -set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin") -set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin") -set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt") -execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}") -execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N") -execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N") -execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N") - include_directories(${ANAKIN_INCLUDE}) include_directories(${ANAKIN_INCLUDE}/saber/) include_directories(${ANAKIN_INCLUDE}/saber/core/) @@ -48,6 +38,11 @@ set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-reorder -Wno-error=cpp) +if(WITH_GPU) + set(CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=YES -DCUDNN_ROOT=${CUDNN_ROOT} -DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR}) +else() + set(CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=NO) +endif() ExternalProject_Add( extern_anakin ${EXTERNAL_PROJECT_LOG_ARGS} @@ -56,13 +51,11 @@ ExternalProject_Add( GIT_TAG "9424277cf9ae180a14aff09560d3cd60a49c76d2" PREFIX ${ANAKIN_SOURCE_DIR} UPDATE_COMMAND "" - CMAKE_ARGS -DUSE_GPU_PLACE=YES + CMAKE_ARGS ${CMAKE_ARGS_PREFIX} -DUSE_X86_PLACE=YES -DBUILD_WITH_UNIT_TEST=NO -DPROTOBUF_ROOT=${THIRD_PARTY_PATH}/install/protobuf -DMKLML_ROOT=${THIRD_PARTY_PATH}/install/mklml - -DCUDNN_ROOT=${CUDNN_ROOT} - -DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR} -DENABLE_OP_TIMER=${ANAKIN_ENABLE_OP_TIMER} ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ANAKIN_INSTALL_DIR} diff --git a/cmake/inference_lib.cmake b/cmake/inference_lib.cmake index f61770514eb05a99c140cdb18575c89aa5235c14..6e66ba94abb67ee4ab8b888cd9a7ff917aa68094 100644 --- a/cmake/inference_lib.cmake +++ b/cmake/inference_lib.cmake @@ -145,7 +145,7 @@ copy(memory_lib set(inference_deps paddle_fluid_shared paddle_fluid) set(module "inference/api") -if (WITH_ANAKIN AND WITH_GPU) +if (WITH_ANAKIN AND WITH_MKL) copy(anakin_inference_lib DEPS paddle_inference_api inference_anakin_api SRCS ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/libinference_anakin_api* # compiled anakin api diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst index ecbd8191ccf5aa6046e7875fe8afa2ed0105e4a0..6f0267cd7a1d0afcdcb1596a46ffe2d15eea100d 100644 --- a/doc/fluid/api/layers.rst +++ b/doc/fluid/api/layers.rst @@ -822,6 +822,14 @@ pad .. autofunction:: paddle.fluid.layers.pad :noindex: +.. _api_fluid_layers_pad_constant_like: + +pad_constant_like +--- + +.. autofunction:: paddle.fluid.layers.pad_constant_like + :noindex: + .. _api_fluid_layers_label_smooth: label_smooth @@ -1145,6 +1153,14 @@ sigmoid .. autofunction:: paddle.fluid.layers.sigmoid :noindex: +.. _api_fluid_layers_hsigmoid: + +hsigmoid +------- + +.. autofunction:: paddle.fluid.layers.hsigmoid + :noindex: + .. _api_fluid_layers_logsigmoid: logsigmoid diff --git a/doc/fluid/new_docs/user_guides/howto/debug/visualdl.md b/doc/fluid/new_docs/user_guides/howto/debug/visualdl.md index 84987ea5daee9abd0fe2fe71bdfde62ea3388ab5..99f8bee5ca1519ccf5d7c35ad2a64da4a8841ada 100644 --- a/doc/fluid/new_docs/user_guides/howto/debug/visualdl.md +++ b/doc/fluid/new_docs/user_guides/howto/debug/visualdl.md @@ -104,6 +104,7 @@ visualDL --logdir=scratch_log --port=8080 # 访问 http://127.0.0.1:8080 ``` +如果出现`TypeError: __init__() got an unexpected keyword argument 'file'`, 是因为protobuf不是3.5以上,运行`pip install --upgrade protobuf`就能解决。 如果在虚拟环境下仍然遇到安装问题,请尝试以下方法。 diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 70e5b97770a6c581c6a9c0145b03c42b83f14471..c2694144d708161a3bed214ceca745505656456f 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -43,6 +43,7 @@ paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.Trainer.__init__ ArgSpec(args=['self', 'train_func', 'optimizer_func', 'param_path', 'place', 'parallel', 'checkpoint_config'], varargs=None, keywords=None, defaults=(None, None, False, None)) +paddle.fluid.Trainer.save_inference_model ArgSpec(args=['self', 'param_path', 'feeded_var_names', 'target_var_indexes'], varargs=None, keywords=None, defaults=None) paddle.fluid.Trainer.save_params ArgSpec(args=['self', 'param_path'], varargs=None, keywords=None, defaults=None) paddle.fluid.Trainer.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Trainer.test ArgSpec(args=['self', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=None) diff --git a/paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc b/paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc index d7580a1cfd689c122ea1e7db5918e2cd8711718f..bb52d7e498e55c02ddc2cd6d07ccccd51ce4edc5 100644 --- a/paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc +++ b/paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc @@ -13,13 +13,10 @@ // limitations under the License. #include "paddle/fluid/framework/ir/attention_lstm_fuse_pass.h" - #include - #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h" #include "paddle/fluid/framework/lod_tensor.h" -#include "paddle/fluid/inference/api/helper.h" namespace paddle { namespace framework { diff --git a/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc b/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc index 5fa3fcb9dc99fa891b432d8c839f820e9730db6b..3e09613699e04bc05abf19e81e9a4ea5b41a6733 100644 --- a/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc +++ b/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc @@ -11,6 +11,7 @@ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. + #include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h" #include #include "paddle/fluid/framework/lod_tensor.h" diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.cc b/paddle/fluid/framework/ir/graph_pattern_detector.cc index 8b1e653ec88a94f7e1ab8e367e787152de57e7c7..37566b7621fab6c7172043599673afdfca9dc2fd 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.cc +++ b/paddle/fluid/framework/ir/graph_pattern_detector.cc @@ -85,7 +85,7 @@ void GraphPatternDetector::operator()(Graph* graph, LOG(INFO) << "detect " << subgraphs.size() << " subgraph matches the pattern"; int id = 0; for (auto& g : subgraphs) { - LOG(INFO) << "optimizing #" << id++ << " subgraph"; + VLOG(3) << "optimizing #" << id++ << " subgraph"; handler(g, graph); } } diff --git a/paddle/fluid/framework/ir/graph_viz_pass.cc b/paddle/fluid/framework/ir/graph_viz_pass.cc index 4c7ffe69e933de3d52c8f762a1eeb73de17e0561..31ed98db72c8fd4af8c970861d386687962001ce 100644 --- a/paddle/fluid/framework/ir/graph_viz_pass.cc +++ b/paddle/fluid/framework/ir/graph_viz_pass.cc @@ -50,20 +50,37 @@ std::unique_ptr GraphVizPass::ApplyImpl( Dot dot; - std::vector op_attrs({Dot::Attr("style", "filled"), - Dot::Attr("shape", "box"), - Dot::Attr("fillcolor", "red")}); - std::vector var_attrs({Dot::Attr("style", "filled,rounded"), - // Dot::Attr("shape", "diamond"), - Dot::Attr("fillcolor", "yellow")}); - - std::vector marked_op_attrs({Dot::Attr("style", "filled"), - Dot::Attr("shape", "box"), - Dot::Attr("fillcolor", "lightgray")}); - std::vector marked_var_attrs( - {Dot::Attr("style", "filled,rounded"), - // Dot::Attr("shape", "diamond"), - Dot::Attr("fillcolor", "lightgray")}); + const std::vector op_attrs({ + Dot::Attr("style", "rounded,filled,bold"), // + Dot::Attr("shape", "box"), // + Dot::Attr("color", "#303A3A"), // + Dot::Attr("fontcolor", "#ffffff"), // + Dot::Attr("width", "1.3"), // + Dot::Attr("height", "0.84"), // + Dot::Attr("fontname", "Arial"), // + }); + const std::vector arg_attrs({ + Dot::Attr("shape", "box"), // + Dot::Attr("style", "rounded,filled,bold"), // + Dot::Attr("fontname", "Arial"), // + Dot::Attr("fillcolor", "#999999"), // + Dot::Attr("color", "#dddddd"), // + }); + + const std::vector param_attrs({ + Dot::Attr("shape", "box"), // + Dot::Attr("style", "rounded,filled,bold"), // + Dot::Attr("fontname", "Arial"), // + Dot::Attr("color", "#148b97"), // + Dot::Attr("fontcolor", "#ffffff"), // + }); + + const std::vector marked_op_attrs( + {Dot::Attr("style", "rounded,filled,bold"), Dot::Attr("shape", "box"), + Dot::Attr("fillcolor", "yellow")}); + const std::vector marked_var_attrs( + {Dot::Attr("style", "filled,rounded"), Dot::Attr("shape", "box"), + Dot::Attr("fillcolor", "yellow")}); auto marked_nodes = ConsumeMarkedNodes(graph.get()); // Create nodes @@ -74,9 +91,17 @@ std::unique_ptr GraphVizPass::ApplyImpl( marked_nodes.count(n) ? marked_op_attrs : op_attrs; dot.AddNode(node_id, attr, node_id); } else if (n->IsVar()) { - decltype(op_attrs) attr = - marked_nodes.count(n) ? marked_var_attrs : var_attrs; - dot.AddNode(node_id, attr, node_id); + decltype(op_attrs)* attr; + if (marked_nodes.count(n)) { + attr = &marked_var_attrs; + } else if (const_cast(n)->Var() && + const_cast(n)->Var()->Persistable()) { + attr = ¶m_attrs; + } else { + attr = &arg_attrs; + } + + dot.AddNode(node_id, *attr, node_id); } node2dot[n] = node_id; } diff --git a/paddle/fluid/inference/analysis/CMakeLists.txt b/paddle/fluid/inference/analysis/CMakeLists.txt index dce74ee3f916a6ac0e10e14dfef70e675f22854e..ef55a0c28a043054917e48187bd0ccf84d80b5d3 100644 --- a/paddle/fluid/inference/analysis/CMakeLists.txt +++ b/paddle/fluid/inference/analysis/CMakeLists.txt @@ -6,6 +6,7 @@ cc_library(analysis SRCS pass_manager.cc node.cc data_flow_graph.cc graph_traits analyzer.cc helper.cc # passes + analysis_pass.cc fluid_to_data_flow_graph_pass.cc data_flow_graph_to_fluid_pass.cc dfg_graphviz_draw_pass.cc @@ -99,12 +100,17 @@ inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz") +set(TEXT_CLASSIFICATION_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz") set(TEXT_CLASSIFICATION_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/text_classification" CACHE PATH "Text Classification model and data root." FORCE) if (NOT EXISTS ${TEXT_CLASSIFICATION_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE) inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_MODEL_URL} "text-classification-Senta.tar.gz") + inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_DATA_URL} "text_classification_data.txt.tar.gz") endif() -inference_analysis_test(test_text_classification SRCS test_text_classification.cc +inference_analysis_test(test_text_classification SRCS analyzer_text_classification_tester.cc EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor - ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta) + ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta + --infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt + --topn=1 # Just run top 1 batch. + ) diff --git a/paddle/fluid/inference/analysis/pass.cc b/paddle/fluid/inference/analysis/analysis_pass.cc similarity index 91% rename from paddle/fluid/inference/analysis/pass.cc rename to paddle/fluid/inference/analysis/analysis_pass.cc index 121b72c0a0aa9a0c568b04f7ee9a5bc5c1d6f5f8..9be9f755b9ed7273d842f8c0e2046f0ca0ce2247 100644 --- a/paddle/fluid/inference/analysis/pass.cc +++ b/paddle/fluid/inference/analysis/analysis_pass.cc @@ -12,4 +12,4 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/inference/analysis/pass.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" diff --git a/paddle/fluid/inference/analysis/pass.h b/paddle/fluid/inference/analysis/analysis_pass.h similarity index 59% rename from paddle/fluid/inference/analysis/pass.h rename to paddle/fluid/inference/analysis/analysis_pass.h index 7719c6f5ff3c940948c7bdbcb25513cdf430281b..b6edb5529ace2ad5bd1b35bfbee1f7a744457cc3 100644 --- a/paddle/fluid/inference/analysis/pass.h +++ b/paddle/fluid/inference/analysis/analysis_pass.h @@ -28,10 +28,10 @@ namespace paddle { namespace inference { namespace analysis { -class Pass { +class AnalysisPass { public: - Pass() = default; - virtual ~Pass() = default; + AnalysisPass() = default; + virtual ~AnalysisPass() = default; // Mutable Pass. virtual bool Initialize(Argument *argument) { return false; } // Readonly Pass. @@ -42,23 +42,16 @@ class Pass { virtual bool Finalize() { return false; } // Get a Pass appropriate to print the Node this pass operates on. - virtual Pass *CreatePrinterPass(std::ostream &os, - const std::string &banner) const { + virtual AnalysisPass *CreatePrinterPass(std::ostream &os, + const std::string &banner) const { return nullptr; } // Create a debugger Pass that draw the DFG by graphviz toolkit. - virtual Pass *CreateGraphvizDebugerPass() const { return nullptr; } + virtual AnalysisPass *CreateGraphvizDebugerPass() const { return nullptr; } - virtual void Run() { LOG(FATAL) << "not valid"; } - // Run on a single Node. - virtual void Run(Node *x) { LOG(FATAL) << "not valid"; } - // Run on a single Function. - virtual void Run(Function *x) { LOG(FATAL) << "not valid"; } - // Run on a single FunctionBlock. - virtual void Run(FunctionBlock *x) { LOG(FATAL) << "not valid"; } // Run on a single DataFlowGraph. - virtual void Run(DataFlowGraph *x) { LOG(FATAL) << "not valid"; } + virtual void Run(DataFlowGraph *x) = 0; // Human-readable short representation. virtual std::string repr() const = 0; @@ -66,29 +59,8 @@ class Pass { virtual std::string description() const { return "No DOC"; } }; -// NodePass process on any Node types. -class NodePass : public Pass { - public: - virtual void Run(Node *node) = 0; -}; - -// NodePass process on any Function node types. -class FunctionPass : public Pass { - public: - virtual void Run(Function *node) = 0; -}; - -// NodePass process on any FunctionBlock node types. -class FunctionBlockPass : public Pass { - public: - virtual void Run(FunctionBlock *node) = 0; -}; - // GraphPass processes on any GraphType. -class DataFlowGraphPass : public Pass { - public: - virtual void Run(DataFlowGraph *graph) = 0; -}; +class DataFlowGraphPass : public AnalysisPass {}; } // namespace analysis } // namespace inference diff --git a/paddle/fluid/inference/analysis/analyzer.cc b/paddle/fluid/inference/analysis/analyzer.cc index ca834406451d53fd44887300561a6327d97cafcd..6dc39cae0522efd48c2e2921611adebd6937ddf7 100644 --- a/paddle/fluid/inference/analysis/analyzer.cc +++ b/paddle/fluid/inference/analysis/analyzer.cc @@ -15,6 +15,7 @@ #include "paddle/fluid/inference/analysis/analyzer.h" #include #include + #include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h" #include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h" #include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h" @@ -58,7 +59,7 @@ class DfgPassManagerImpl final : public DfgPassManager { std::string description() const override { return "DFG pass manager."; } private: - void AddPass(const std::string& name, Pass* pass) { + void AddPass(const std::string& name, AnalysisPass* pass) { VLOG(3) << "Adding pass " << name; Register(name, pass); AddGraphvizDebugerPass(pass); @@ -87,7 +88,7 @@ class DfgPassManagerImpl final : public DfgPassManager { } // Add the graphviz debuger pass if the parent pass has one. - void AddGraphvizDebugerPass(Pass* pass) { + void AddGraphvizDebugerPass(AnalysisPass* pass) { auto* debuger_pass = pass->CreateGraphvizDebugerPass(); if (debuger_pass) { Register(debuger_pass->repr(), debuger_pass); @@ -106,7 +107,6 @@ void Analyzer::Run(Argument* argument) { } } passes.push_back("graph_viz_pass"); - // Ugly support fluid-to-ir-pass argument->Set(kFluidToIrPassesAttr, new std::vector(passes)); for (auto& x : data_) { diff --git a/paddle/fluid/inference/analysis/analyzer.h b/paddle/fluid/inference/analysis/analyzer.h index 7800fc90b18b9e9c0b153192db1c507cd143cffa..6189548a7b1f0cd2d8285529be6e54722dc24e08 100644 --- a/paddle/fluid/inference/analysis/analyzer.h +++ b/paddle/fluid/inference/analysis/analyzer.h @@ -38,8 +38,9 @@ limitations under the License. */ #include #include #include + +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/flags.h" -#include "paddle/fluid/inference/analysis/pass.h" #include "paddle/fluid/inference/analysis/pass_manager.h" namespace paddle { diff --git a/paddle/fluid/inference/analysis/analyzer_tester.cc b/paddle/fluid/inference/analysis/analyzer_tester.cc index 94be6733f63488634ee1302e015a57c9a8892d84..4cf26d3c70eafd951d14c26335416ec2c71c001d 100644 --- a/paddle/fluid/inference/analysis/analyzer_tester.cc +++ b/paddle/fluid/inference/analysis/analyzer_tester.cc @@ -16,6 +16,7 @@ #include #include +#include // NOLINT #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/ut_helper.h" @@ -24,12 +25,12 @@ #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/utils/singleton.h" -#include "paddle/fluid/platform/profiler.h" DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN"); DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN"); DEFINE_int32(batch_size, 10, "batch size."); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); +DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); namespace paddle { namespace inference { @@ -220,39 +221,6 @@ void PrepareInputs(std::vector *input_slots, DataRecord *data, } } -std::string DescribeTensor(const PaddleTensor &tensor) { - std::stringstream os; - os << "Tensor [" << tensor.name << "]\n"; - os << " - type: "; - switch (tensor.dtype) { - case PaddleDType::FLOAT32: - os << "float32"; - break; - case PaddleDType::INT64: - os << "int64"; - break; - default: - os << "unset"; - } - os << '\n'; - - os << " - shape: " << to_string(tensor.shape) << '\n'; - os << " - lod: "; - for (auto &l : tensor.lod) { - os << to_string(l) << "; "; - } - os << "\n"; - os << " - data: "; - - int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1, - [](int a, int b) { return a * b; }); - for (int i = 0; i < dim; i++) { - os << static_cast(tensor.data.data())[i] << " "; - } - os << '\n'; - return os.str(); -} - } // namespace const float ditu_rnn_target_data[] = { @@ -266,11 +234,29 @@ const float ditu_rnn_target_data[] = { 10.7286, 12.0595, 10.6672, 0, 0, 0, 0, 0, 93.5771, 3.84641, 0, 0, 0, 0, 0, 0, 169.426, 0, 0, 0, 0, 0, 0, 0}; +void CompareResult(const std::vector &outputs, + const std::vector &base_outputs) { + PADDLE_ENFORCE_GT(outputs.size(), 0); + PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size()); + for (size_t i = 0; i < outputs.size(); i++) { + auto &out = outputs[i]; + auto &base_out = base_outputs[i]; + size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, + [](int a, int b) { return a * b; }); + size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(), + 1, [](int a, int b) { return a * b; }); + PADDLE_ENFORCE_EQ(size, size1); + PADDLE_ENFORCE_GT(size, 0); + float *data = static_cast(out.data.data()); + float *base_data = static_cast(base_out.data.data()); + for (size_t i = 0; i < size; i++) { + EXPECT_NEAR(data[i], base_data[i], 1e-3); + } + } +} // Test with a really complicate model. -void TestDituRNNPrediction(const std::string &model_path, - const std::string &data_path, int batch_size, - bool use_analysis, bool activate_ir, - int num_times = 1) { +void TestDituRNNPrediction(bool use_analysis, bool activate_ir, + int num_threads) { AnalysisConfig config; config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__"; config.param_file = FLAGS_infer_ditu_rnn_model + "/param"; @@ -281,6 +267,8 @@ void TestDituRNNPrediction(const std::string &model_path, PADDLE_ENFORCE(config.ir_mode == AnalysisConfig::IrPassMode::kExclude); // default config.ir_passes.clear(); // Do not exclude any pass. + int batch_size = FLAGS_batch_size; + int num_times = FLAGS_repeat; auto base_predictor = CreatePaddlePredictor(config); @@ -288,40 +276,55 @@ void TestDituRNNPrediction(const std::string &model_path, CreatePaddlePredictor( config); std::vector input_slots; - DataRecord data(data_path, batch_size); + DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size); // Prepare inputs. PrepareInputs(&input_slots, &data, batch_size); std::vector outputs, base_outputs; base_predictor->Run(input_slots, &base_outputs); - Timer timer; - timer.tic(); - for (int i = 0; i < num_times; i++) { - predictor->Run(input_slots, &outputs); - } LOG(INFO) << "===========profile result==========="; - LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << num_times - << ", latency: " << timer.toc() / num_times << "ms"; - LOG(INFO) << "====================================="; - - PADDLE_ENFORCE_GT(outputs.size(), 0); - PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size()); - for (size_t i = 0; i < outputs.size(); i++) { - auto &out = outputs[i]; - auto &base_out = base_outputs[i]; - size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, - [](int a, int b) { return a * b; }); - size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(), - 1, [](int a, int b) { return a * b; }); - PADDLE_ENFORCE_EQ(size, size1); - PADDLE_ENFORCE_GT(size, 0); - float *data = static_cast(out.data.data()); - float *base_data = static_cast(base_out.data.data()); - for (size_t j = 0; j < size; j++) { - EXPECT_NEAR(data[j], base_data[j], 1e-3); + if (num_threads == 1) { + // Prepare inputs. + Timer timer; + timer.tic(); + for (int i = 0; i < num_times; i++) { + predictor->Run(input_slots, &outputs); + } + PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times); + CompareResult(outputs, base_outputs); + } else { + std::vector threads; + std::vector> predictors; + // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled + // because AttentionLSTM's hard code nodeid will be damanged. + for (int tid = 0; tid < num_threads; ++tid) { + predictors.emplace_back( + CreatePaddlePredictor( + config)); + } + for (int tid = 0; tid < num_threads; ++tid) { + threads.emplace_back([&, tid]() { + // Each thread should have local input_slots and outputs. + std::vector input_slots; + DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size); + PrepareInputs(&input_slots, &data, batch_size); + std::vector outputs; + Timer timer; + timer.tic(); + for (int i = 0; i < num_times; i++) { + predictors[tid]->Run(input_slots, &outputs); + } + PrintTime(batch_size, num_times, num_threads, tid, + timer.toc() / num_times); + CompareResult(outputs, base_outputs); + }); + } + for (int i = 0; i < num_threads; ++i) { + threads[i].join(); } } + LOG(INFO) << "====================================="; if (use_analysis && activate_ir) { AnalysisPredictor *analysis_predictor = @@ -350,25 +353,26 @@ void TestDituRNNPrediction(const std::string &model_path, } } -// Directly infer with the original model. -TEST(Analyzer, DituRNN_without_analysis) { - TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, - FLAGS_batch_size, false, false, FLAGS_repeat); +// Inference with analysis and IR, easy for profiling independently. +TEST(Analyzer, DituRNN) { + TestDituRNNPrediction(true, true, FLAGS_num_threads); } -// Inference with the original model with the analysis turned on, the analysis -// module will transform the program to a data flow graph. -TEST(Analyzer, DituRNN_with_analysis) { - LOG(INFO) << "ditu rnn with analysis"; - TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, - FLAGS_batch_size, true, false, FLAGS_repeat); -} - -// Inference with analysis and IR. The IR module will fuse some large kernels. -TEST(Analyzer, DituRNN_with_analysis_with_IR) { - LOG(INFO) << "ditu rnn with analysis and IR fuse"; - TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, - FLAGS_batch_size, true, true, FLAGS_repeat); +// Other unit-tests of DituRNN, test different options of use_analysis, +// activate_ir and multi-threads. +TEST(Analyzer, DituRNN_tests) { + int num_threads[2] = {1, 4}; + for (auto i : num_threads) { + // Directly infer with the original model. + TestDituRNNPrediction(false, false, i); + // Inference with the original model with the analysis turned on, the + // analysis + // module will transform the program to a data flow graph. + TestDituRNNPrediction(true, false, i); + // Inference with analysis and IR. The IR module will fuse some large + // kernels. + TestDituRNNPrediction(true, true, i); + } } } // namespace analysis diff --git a/paddle/fluid/inference/analysis/test_text_classification.cc b/paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc similarity index 65% rename from paddle/fluid/inference/analysis/test_text_classification.cc rename to paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc index 2913824f62301795aea967c22021b2af11f343c1..0e493176c4bfb154de0d079868f9f396813ec48f 100644 --- a/paddle/fluid/inference/analysis/test_text_classification.cc +++ b/paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc @@ -12,19 +12,23 @@ // See the License for the specific language governing permissions and // limitations under the License. +#include "paddle/fluid/inference/analysis/analyzer.h" #include #include // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files. #include +#include #include "paddle/fluid/framework/ir/pass.h" -#include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/analysis/ut_helper.h" +#include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" +#include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/api/timer.h" DEFINE_string(infer_model, "", "Directory of the inference model."); DEFINE_string(infer_data, "", "Path of the dataset."); DEFINE_int32(batch_size, 1, "batch size."); DEFINE_int32(repeat, 1, "How many times to repeat run."); +DEFINE_int32(topn, -1, "Run top n batches of data to save time"); namespace paddle { @@ -44,41 +48,67 @@ void PrintTime(const double latency, const int bs, const int repeat) { LOG(INFO) << "====================================="; } -void Main(int batch_size) { - // Three sequence inputs. - std::vector input_slots(1); - // one batch starts - // data -- - int64_t data0[] = {0, 1, 2}; - for (auto &input : input_slots) { - input.data.Reset(data0, sizeof(data0)); - input.shape = std::vector({3, 1}); - // dtype -- - input.dtype = PaddleDType::INT64; - // LoD -- - input.lod = std::vector>({{0, 3}}); +struct DataReader { + DataReader(const std::string &path) : file(new std::ifstream(path)) {} + + bool NextBatch(PaddleTensor *tensor, int batch_size) { + PADDLE_ENFORCE_EQ(batch_size, 1); + std::string line; + tensor->lod.clear(); + tensor->lod.emplace_back(std::vector({0})); + std::vector data; + + for (int i = 0; i < batch_size; i++) { + if (!std::getline(*file, line)) return false; + inference::split_to_int64(line, ' ', &data); + } + tensor->lod.front().push_back(data.size()); + + tensor->data.Resize(data.size() * sizeof(int64_t)); + memcpy(tensor->data.data(), data.data(), data.size() * sizeof(int64_t)); + tensor->shape.clear(); + tensor->shape.push_back(data.size()); + tensor->shape.push_back(1); + return true; } + std::unique_ptr file; +}; + +void Main(int batch_size) { // shape -- // Create Predictor -- AnalysisConfig config; config.model_dir = FLAGS_infer_model; config.use_gpu = false; config.enable_ir_optim = true; - config.ir_passes.push_back("fc_lstm_fuse_pass"); auto predictor = CreatePaddlePredictor( config); + std::vector input_slots(1); + // one batch starts + // data -- + auto &input = input_slots[0]; + input.dtype = PaddleDType::INT64; + inference::Timer timer; double sum = 0; std::vector output_slots; - for (int i = 0; i < FLAGS_repeat; i++) { - timer.tic(); - CHECK(predictor->Run(input_slots, &output_slots)); - sum += timer.toc(); + + int num_batches = 0; + for (int t = 0; t < FLAGS_repeat; t++) { + DataReader reader(FLAGS_infer_data); + while (reader.NextBatch(&input, FLAGS_batch_size)) { + if (FLAGS_topn > 0 && num_batches > FLAGS_topn) break; + timer.tic(); + CHECK(predictor->Run(input_slots, &output_slots)); + sum += timer.toc(); + ++num_batches; + } } - PrintTime(sum, batch_size, FLAGS_repeat); + + PrintTime(sum, batch_size, num_batches); // Get output LOG(INFO) << "get outputs " << output_slots.size(); @@ -100,10 +130,3 @@ void Main(int batch_size) { TEST(text_classification, basic) { Main(FLAGS_batch_size); } } // namespace paddle - -USE_PASS(fc_fuse_pass); -USE_PASS(seq_concat_fc_fuse_pass); -USE_PASS(fc_lstm_fuse_pass); -USE_PASS(graph_viz_pass); -USE_PASS(infer_clean_graph_pass); -USE_PASS(attention_lstm_fuse_pass); diff --git a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc index 80c85555e722433f3657e880520b3fe459f6ce1a..8579845d51e80d73d220465d25b70944f5ad9bf2 100644 --- a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc +++ b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc @@ -263,7 +263,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass { }; } // namespace -Pass *DataFlowGraphToFluidPass::CreateGraphvizDebugerPass() const { +AnalysisPass *DataFlowGraphToFluidPass::CreateGraphvizDebugerPass() const { return new DFG_DebuggerPass(DFG_GraphvizDrawPass::Config( FLAGS_IA_graphviz_log_root, "data_flow_graph_to_fluid_graphviz_debugger")); diff --git a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h index 0c9a8a0b7cae17bf2eaa714348ea1c9b5e43611b..891c7226e245fa3b92892785362c186185a61f62 100644 --- a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h +++ b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h @@ -21,8 +21,8 @@ #include #include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/data_flow_graph.h" -#include "paddle/fluid/inference/analysis/pass.h" namespace paddle { namespace inference { @@ -42,7 +42,7 @@ class DataFlowGraphToFluidPass final : public DataFlowGraphPass { return "Transform a DFG to a Fluid ProgramDesc"; } - Pass *CreateGraphvizDebugerPass() const override; + AnalysisPass *CreateGraphvizDebugerPass() const override; protected: // Add a Fluid Op into the ProgramDesc. diff --git a/paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h b/paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h index 17445ab4407a159ca11345bc9a9226b3ad0044f0..e537bfc0e64d4ff46b3d61499a1a0298ed83533f 100644 --- a/paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h +++ b/paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h @@ -21,8 +21,8 @@ limitations under the License. */ #include #include +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/dot.h" -#include "paddle/fluid/inference/analysis/pass.h" namespace paddle { namespace inference { diff --git a/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc b/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc index 51bd0ac42d455f68ac5d70f0ce9703dfad6070d4..2b7d632c839e735ca03c6e17b94307b40cc13374 100644 --- a/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc +++ b/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.cc @@ -66,7 +66,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass { }; } -Pass *FluidToDataFlowGraphPass::CreateGraphvizDebugerPass() const { +AnalysisPass *FluidToDataFlowGraphPass::CreateGraphvizDebugerPass() const { return new DFG_DebuggerPass(DFG_GraphvizDrawPass::Config( FLAGS_IA_graphviz_log_root, "fluid-to-dfg-debuger")); } diff --git a/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h b/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h index fb948bf2242abcbc1e841fd3b8457e63358782c5..b9e262020e9522e167b998d57e2be2ac19b48447 100644 --- a/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h +++ b/paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h @@ -22,8 +22,8 @@ #include #include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/data_flow_graph.h" -#include "paddle/fluid/inference/analysis/pass.h" namespace paddle { namespace inference { @@ -46,7 +46,7 @@ class FluidToDataFlowGraphPass final : public DataFlowGraphPass { return "transform a fluid ProgramDesc to a data flow graph."; } - Pass *CreateGraphvizDebugerPass() const override; + AnalysisPass *CreateGraphvizDebugerPass() const override; private: framework::proto::ProgramDesc const *desc_; diff --git a/paddle/fluid/inference/analysis/fluid_to_ir_pass.h b/paddle/fluid/inference/analysis/fluid_to_ir_pass.h index 3086085710d6e850ed27e82d2323690dfdd3ef19..c2599e218a2306f9353b843b7ea3f18aeacb008e 100644 --- a/paddle/fluid/inference/analysis/fluid_to_ir_pass.h +++ b/paddle/fluid/inference/analysis/fluid_to_ir_pass.h @@ -14,15 +14,17 @@ #pragma once +#include +#include + #include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/flags.h" #include "paddle/fluid/inference/analysis/ir_pass_manager.h" -#include "paddle/fluid/inference/analysis/pass.h" namespace paddle { namespace inference { namespace analysis { -using namespace framework; static const char kFluidToIrPassesAttr[] = "__fluid_to_ir_passes__"; @@ -48,7 +50,8 @@ class FluidToIrPass final : public DataFlowGraphPass { ANALYSIS_ARGUMENT_CHECK_FIELD(argument->fluid_model_program_path); // Load program. auto program = LoadProgramDesc(*argument->fluid_model_program_path); - argument->origin_program_desc.reset(new proto::ProgramDesc(program)); + argument->origin_program_desc.reset( + new framework::proto::ProgramDesc(program)); // Create main data flow graph. if (!argument->main_dfg) { argument->main_dfg.reset(new DataFlowGraph); @@ -78,12 +81,13 @@ class FluidToIrPass final : public DataFlowGraphPass { IRPassManager ir_passes(argument_->Get("ir_program_desc"), nullptr); // Pass the scope from analysis to IR if needed. - if (argument_->Has(ir::kParamScopeAttr)) { + if (argument_->Has(framework::ir::kParamScopeAttr)) { // Here the address is passed, attention that IR doesn't own the scope, so // the real scope in analysis should live during the IR phase. ir_passes.graph().Set( - ir::kParamScopeAttr, - new Scope *(&argument_->Get(ir::kParamScopeAttr))); + framework::ir::kParamScopeAttr, + new framework::Scope *(&argument_->Get( + framework::ir::kParamScopeAttr))); } if (FLAGS_IA_enable_ir) { @@ -95,12 +99,12 @@ class FluidToIrPass final : public DataFlowGraphPass { PADDLE_ENFORCE(argument_->main_dfg.get()); argument_->main_dfg->Build(ir_passes.graph()); // inherit the arguments from ir. - if (ir_passes.graph().Has(ir::kFuseStatisAttr)) { + if (ir_passes.graph().Has(framework::ir::kFuseStatisAttr)) { argument_->Set( - ir::kFuseStatisAttr, + framework::ir::kFuseStatisAttr, new std::unordered_map( ir_passes.graph().Get>( - ir::kFuseStatisAttr))); + framework::ir::kFuseStatisAttr))); } } @@ -112,7 +116,7 @@ class FluidToIrPass final : public DataFlowGraphPass { private: // Load parameters from a single file or from a directory. - bool LoadParams(Scope *scope, const std::string &dir, + bool LoadParams(framework::Scope *scope, const std::string &dir, const std::string &prog_file, const std::string ¶m_file); private: diff --git a/paddle/fluid/inference/analysis/model_store_pass.h b/paddle/fluid/inference/analysis/model_store_pass.h index 3a2869e30bd80cfd0756f8e21acb414656620eaa..f14b49e09c2f8e79c6fc4accdbf17f4f7a9bb1a3 100644 --- a/paddle/fluid/inference/analysis/model_store_pass.h +++ b/paddle/fluid/inference/analysis/model_store_pass.h @@ -19,7 +19,7 @@ #pragma once #include -#include "paddle/fluid/inference/analysis/pass.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" namespace paddle { namespace inference { diff --git a/paddle/fluid/inference/analysis/pass_manager.cc b/paddle/fluid/inference/analysis/pass_manager.cc index ff5ec94265a4f05c1294ad6c8ac5f86c249b84b6..759b2b96a1944c060ac98b6865b58ba2f6369607 100644 --- a/paddle/fluid/inference/analysis/pass_manager.cc +++ b/paddle/fluid/inference/analysis/pass_manager.cc @@ -40,17 +40,6 @@ void DfgPassManager::RunAll() { } } -void NodePassManager::RunAll() { - PADDLE_ENFORCE(argument_); - PADDLE_ENFORCE(argument_->main_dfg.get()); - auto trait = GraphTraits(*argument_->main_dfg).nodes_in_DFS(); - for (auto& node : trait) { - for (auto& pass : data_) { - pass->Run(&node); - } - } -} - } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/analysis/pass_manager.h b/paddle/fluid/inference/analysis/pass_manager.h index 81a17e0287a5aef8a328e43380ee3691f5a32379..412747c4fcce73303703f586f7a04edf4cc5ee76 100644 --- a/paddle/fluid/inference/analysis/pass_manager.h +++ b/paddle/fluid/inference/analysis/pass_manager.h @@ -33,7 +33,7 @@ limitations under the License. */ #include #include "paddle/fluid/framework/program_desc.h" -#include "paddle/fluid/inference/analysis/pass.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" namespace paddle { namespace inference { @@ -43,7 +43,7 @@ namespace analysis { * PassManager is the base class for all pass managers, a pass manager has * several Pass-es registered, and execute them in the linear order. */ -class PassManager : public OrderedRegistry { +class PassManager : public OrderedRegistry { public: PassManager() = default; // Call all the passes' Initialize methods. The desc and data_flow_graph are @@ -89,18 +89,6 @@ class DfgPassManager : public PassManager { virtual ~DfgPassManager() = default; }; -/* - * A pass manager that process a Node each time. - */ -class NodePassManager : public PassManager { - public: - NodePassManager() = default; - - void RunAll() override; - - virtual ~NodePassManager() = default; -}; - } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/analysis/pass_manager_tester.cc b/paddle/fluid/inference/analysis/pass_manager_tester.cc index 13423e4837e12a96e7a5dfc9ca3f59bf8b14746a..72b0fbf7e571ec97a0ea093d01449c1d5ddb9b91 100644 --- a/paddle/fluid/inference/analysis/pass_manager_tester.cc +++ b/paddle/fluid/inference/analysis/pass_manager_tester.cc @@ -34,28 +34,6 @@ class TestDfgPassManager final : public DfgPassManager { std::string description() const override { return "test doc"; } }; -class TestNodePassManager final : public NodePassManager { - public: - virtual ~TestNodePassManager() = default; - - std::string repr() const override { return "test-node-pass-manager"; } - std::string description() const override { return "test doc"; } -}; - -class TestNodePass final : public NodePass { - public: - virtual ~TestNodePass() = default; - - bool Initialize(Argument* argument) override { return true; } - - void Run(Node* node) override { - LOG(INFO) << "- Processing node " << node->repr(); - } - - std::string repr() const override { return "test-node"; } - std::string description() const override { return "some doc"; } -}; - TEST(PassManager, DFG_pass_manager) { TestDfgPassManager manager; DFG_GraphvizDrawPass::Config config("./", "dfg.dot"); @@ -71,19 +49,6 @@ TEST(PassManager, DFG_pass_manager) { manager.RunAll(); } -TEST(PassManager, Node_pass_manager) { - Argument argument(FLAGS_inference_model_dir); - // Pre-process: initialize the DFG with the ProgramDesc first. - FluidToDataFlowGraphPass pass0; - pass0.Initialize(&argument); - pass0.Run(argument.main_dfg.get()); - - TestNodePassManager manager; - manager.Register("test-node-pass", new TestNodePass); - ASSERT_TRUE(manager.Initialize(&argument)); - manager.RunAll(); -} - } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc b/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc index 9f51fafe0b2a66f9d062a6b751fe7a3bc662ce7c..174c8513f92cf869419f04cab5a54af65e9673b8 100644 --- a/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc +++ b/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.cc @@ -68,7 +68,7 @@ class DfgDebuggerPass : public DFG_GraphvizDrawPass { } }; -Pass *TensorRTSubgraphNodeMarkPass::CreateGraphvizDebugerPass() const { +AnalysisPass *TensorRTSubgraphNodeMarkPass::CreateGraphvizDebugerPass() const { DFG_GraphvizDrawPass::Config config(FLAGS_IA_graphviz_log_root, "tensorrt_marked_node"); return new DfgDebuggerPass(config); diff --git a/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h b/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h index c558a6ebbde371071c7330a14cc986bf764d1773..c881a54c240538b68abdcb9060db69de3bf2b8bb 100644 --- a/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h +++ b/paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h @@ -20,7 +20,7 @@ #pragma once #include -#include "paddle/fluid/inference/analysis/pass.h" +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/subgraph_splitter.h" namespace paddle { @@ -48,7 +48,7 @@ class TensorRTSubgraphNodeMarkPass : public DataFlowGraphPass { return "tensorrt sub-graph mark pass"; } - Pass* CreateGraphvizDebugerPass() const override; + AnalysisPass* CreateGraphvizDebugerPass() const override; bool Finalize() override; private: diff --git a/paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h b/paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h index c6741a92095d33d261a4e1667c87a8ca02e51a9f..219e3f5470f627e81005aabf94f9c72c33fd2eed 100644 --- a/paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h +++ b/paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h @@ -15,8 +15,8 @@ limitations under the License. */ #pragma once #include +#include "paddle/fluid/inference/analysis/analysis_pass.h" #include "paddle/fluid/inference/analysis/node.h" -#include "paddle/fluid/inference/analysis/pass.h" #include "paddle/fluid/inference/analysis/subgraph_splitter.h" namespace paddle { diff --git a/paddle/fluid/inference/api/CMakeLists.txt b/paddle/fluid/inference/api/CMakeLists.txt index 330ea04495945c4f8d87952cdedb12ef1fa08d30..b69948f40ab524e40e72f2c6858f77db79bcfa03 100644 --- a/paddle/fluid/inference/api/CMakeLists.txt +++ b/paddle/fluid/inference/api/CMakeLists.txt @@ -44,20 +44,7 @@ function(inference_api_test TARGET_NAME) endfunction(inference_api_test) cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor) -cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api - analysis - ir_pass_manager - pass - fc_fuse_pass - fc_lstm_fuse_pass - fc_gru_fuse_pass - seq_concat_fc_fuse_pass - graph_viz_pass - infer_clean_graph_pass - graph_pattern_detector - infer_clean_graph_pass - attention_lstm_fuse_pass -) +cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis) cc_test(test_paddle_inference_api SRCS api_tester.cc @@ -74,7 +61,7 @@ cc_library(paddle_inference_tensorrt_subgraph_engine inference_api_test(test_api_tensorrt_subgraph_engine SRC api_tensorrt_subgraph_engine_tester.cc ARGS test_word2vec) endif() -if (WITH_ANAKIN AND WITH_GPU) # only needed in CI +if (WITH_ANAKIN AND WITH_MKL) # only needed in CI # compile the libinference_anakin_api.a and anakin.so. cc_library(inference_anakin_api SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber mklml) cc_library(inference_anakin_api_shared SHARED SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber) @@ -84,12 +71,24 @@ if (WITH_ANAKIN AND WITH_GPU) # only needed in CI anakin_target(inference_anakin_api) anakin_target(inference_anakin_api_shared) if (WITH_TESTING) - cc_test(api_anakin_engine_tester SRCS api_anakin_engine_tester.cc - ARGS --model=${ANAKIN_SOURCE_DIR}/mobilenet_v2.anakin.bin - DEPS inference_anakin_api_shared dynload_cuda SERIAL) + # TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later. + set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com") + set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin") + set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt") + execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}") + execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N") + execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N") + if(WITH_GPU) + set(anakin_test_extra_deps dynload_cuda) + set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin") + execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N") + cc_test(api_anakin_engine_tester SRCS api_anakin_engine_tester.cc + ARGS --model=${ANAKIN_SOURCE_DIR}/mobilenet_v2.anakin.bin + DEPS inference_anakin_api_shared ${anakin_test_extra_deps} SERIAL) + endif() cc_test(api_anakin_engine_rnn_tester SRCS api_anakin_engine_rnn_tester.cc ARGS --model=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn.anakin2.model.bin --datapath=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn_data.txt - DEPS inference_anakin_api_shared dynload_cuda SERIAL) + DEPS inference_anakin_api_shared ${anakin_test_extra_deps} SERIAL) endif(WITH_TESTING) endif() diff --git a/paddle/fluid/inference/api/analysis_predictor.cc b/paddle/fluid/inference/api/analysis_predictor.cc index 82d673fd1512412d850e09200046fdfa351ebede..2a9a7aed480e76edbac4d5ba6d7bc3b8b2dc5006 100644 --- a/paddle/fluid/inference/api/analysis_predictor.cc +++ b/paddle/fluid/inference/api/analysis_predictor.cc @@ -48,7 +48,6 @@ bool AnalysisPredictor::Init( } else { place_ = paddle::platform::CPUPlace(); } - PADDLE_ENFORCE(!parent_scope); if (parent_scope) { scope_ = parent_scope; sub_scope_ = &(parent_scope->NewScope()); diff --git a/paddle/fluid/inference/api/api_anakin_engine.cc b/paddle/fluid/inference/api/api_anakin_engine.cc index ea66aa89b87ba3c25cdcd5eb2c5155a481ef7987..43b31269d2bd82c06e284e3599a3763da693a2af 100644 --- a/paddle/fluid/inference/api/api_anakin_engine.cc +++ b/paddle/fluid/inference/api/api_anakin_engine.cc @@ -193,7 +193,9 @@ PaddleInferenceAnakinPredictor::Clone() { return std::move(cls); } +#ifdef PADDLE_WITH_CUDA template class PaddleInferenceAnakinPredictor; +#endif template class PaddleInferenceAnakinPredictor; // A factory to help create difference predictor. @@ -202,10 +204,15 @@ std::unique_ptr CreatePaddlePredictor< AnakinConfig, PaddleEngineKind::kAnakin>(const AnakinConfig &config) { VLOG(3) << "Anakin Predictor create."; if (config.target_type == AnakinConfig::NVGPU) { +#ifdef PADDLE_WITH_CUDA VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ]."; std::unique_ptr x( new PaddleInferenceAnakinPredictor(config)); return x; +#else + LOG(ERROR) << "AnakinConfig::NVGPU could not used in ONLY-CPU environment"; + return nullptr; +#endif } else if (config.target_type == AnakinConfig::X86) { VLOG(3) << "Anakin Predictor create on [ Intel X86 ]."; std::unique_ptr x( diff --git a/paddle/fluid/inference/api/helper.h b/paddle/fluid/inference/api/helper.h index ce4728ab8046f886fc40af3644d855a4f971fb71..2c2ac656e8005369bb0e9033236a431cb09caa15 100644 --- a/paddle/fluid/inference/api/helper.h +++ b/paddle/fluid/inference/api/helper.h @@ -14,6 +14,7 @@ #pragma once +#include #include #include #include @@ -88,5 +89,45 @@ static void TensorAssignData(PaddleTensor *tensor, } } +std::string DescribeTensor(const PaddleTensor &tensor) { + std::stringstream os; + os << "Tensor [" << tensor.name << "]\n"; + os << " - type: "; + switch (tensor.dtype) { + case PaddleDType::FLOAT32: + os << "float32"; + break; + case PaddleDType::INT64: + os << "int64"; + break; + default: + os << "unset"; + } + os << '\n'; + + os << " - shape: " << to_string(tensor.shape) << '\n'; + os << " - lod: "; + for (auto &l : tensor.lod) { + os << to_string(l) << "; "; + } + os << "\n"; + os << " - data: "; + + int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1, + [](int a, int b) { return a * b; }); + for (int i = 0; i < dim; i++) { + os << static_cast(tensor.data.data())[i] << " "; + } + os << '\n'; + return os.str(); +} + +void PrintTime(int batch_size, int repeat, int num_threads, int tid, + double latency) { + LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << repeat + << ", threads: " << num_threads << ", thread id: " << tid + << ", latency: " << latency << "ms"; +} + } // namespace inference } // namespace paddle diff --git a/paddle/fluid/operators/fake_quantize_op.cu b/paddle/fluid/operators/fake_quantize_op.cu index 7c65d6dba7d67b5d31720bae1f4877dd22210138..a0ff6396210c2b3a7f8bd6b9f274b875d7fd4933 100644 --- a/paddle/fluid/operators/fake_quantize_op.cu +++ b/paddle/fluid/operators/fake_quantize_op.cu @@ -119,7 +119,8 @@ struct FindRangeAbsMaxFunctor { const framework::Tensor& last_scale, const framework::Tensor& iter, const int window_size, framework::Tensor* scales_arr, framework::Tensor* out_scale) { - auto& gpu_place = boost::get(ctx.GetPlace()); + const auto gpu_place = boost::get(ctx.GetPlace()); + T* scale_arr = scales_arr->mutable_data(gpu_place); T* out_scale_data = out_scale->mutable_data(gpu_place); diff --git a/paddle/fluid/operators/flatten_op.cc b/paddle/fluid/operators/flatten_op.cc index fdda01381e117cecffb2a05f8399f3ad82a46339..8e80dc0e641c443923076c31e269689b5bc134a7 100644 --- a/paddle/fluid/operators/flatten_op.cc +++ b/paddle/fluid/operators/flatten_op.cc @@ -157,6 +157,116 @@ class FlattenGradOp : public framework::OperatorBase { } }; +// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten, +// the XShape is used to carry the shape and lod of X which will be used in +// flatten_grad, in this way, the framework can reuse the memory of X +// immediately the flatten2_op is finished. +// Considering compatibility issues, we could not fix flatten2_op +class Flatten2OpInferShape : public FlattenOpInferShape { + public: + void operator()(framework::InferShapeContext *ctx) const override { + FlattenOpInferShape::operator()(ctx); + PADDLE_ENFORCE(ctx->HasOutput("XShape"), + "Output (XShape) of Flatten op should not be null."); + const auto &in_dims = ctx->GetInputDim("X"); + std::vector xshape_dims(in_dims.size() + 1); + xshape_dims[0] = 0; + for (int i = 0; i < in_dims.size(); ++i) { + xshape_dims[i + 1] = in_dims[i]; + } + ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims)); + ctx->ShareLoD("X", "XShape"); + } +}; + +class Flatten2Op : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto &axis = Attr("axis"); + auto in_dims = + scope.FindVar(Input("X"))->Get().dims(); + const auto &out_dims = FlattenOpInferShape::GetOutputShape(axis, in_dims); + + framework::AttributeMap attrs; + attrs["shape"] = out_dims; + attrs["inplace"] = false; + // Invoke Reshape Op + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {Input("X")}}, {"Shape", {}}}, + {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs); + reshape_op->Run(scope, place); + } +}; + +class Flatten2OpMaker : public FlattenOpMaker { + public: + void Make() override { + FlattenOpMaker::Make(); + AddOutput("XShape", + "XShape is just used to store the shape and lod of X, which will " + "be used in FlattenGradOp.") + .AsIntermediate(); + } +}; + +class Flatten2GradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("flatten2_grad"); + grad_op->SetInput("XShape", Output("XShape")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +class Flatten2GradInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + PADDLE_ENFORCE(context->HasInput("XShape"), + "Input(XShape) shouldn't be null."); + PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto xshape_dims = context->GetInputDim("XShape"); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + context->SetOutputDim(framework::GradVarName("X"), x_dims); + context->ShareLoD("XShape", framework::GradVarName("X")); + } +}; + +class Flatten2GradOp : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto dx_name = Output(framework::GradVarName("X")); + auto dout_name = Input(framework::GradVarName("Out")); + auto xshape_name = Input("XShape"); + auto xshape_dims = + scope.FindVar(xshape_name)->Get().dims(); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + + framework::AttributeMap attrs; + attrs["shape"] = framework::vectorize2int(x_dims); + attrs["inplace"] = false; + + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {dout_name}}, {"Shape", {}}}, + {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs); + reshape_op->Run(scope, place); + } +}; + } // namespace operators } // namespace paddle @@ -167,3 +277,8 @@ REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker, ops::FlattenOpInferShape, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp, ops::FlattenGradInferShape); + +REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker, + ops::Flatten2OpInferShape, ops::Flatten2GradOpMaker); +REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp, + ops::Flatten2GradInferShape); diff --git a/paddle/fluid/operators/fusion_gru_op.cc b/paddle/fluid/operators/fusion_gru_op.cc index 582c75872ab2818cdf834f9a46278db1d6f91d54..916f84cb4a78c3721cb67bd3cf8d3759a8eaf1bf 100644 --- a/paddle/fluid/operators/fusion_gru_op.cc +++ b/paddle/fluid/operators/fusion_gru_op.cc @@ -30,14 +30,7 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const { "Input(WeightX) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasInput("WeightH"), "Input(WeightH) of GRU should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), - "Output(ReorderedH0) of GRU should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), - "Output(BatchedInput) of GRU should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"), - "Output(BatchedOut) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Hidden"), "Output(Hidden) of GRU should not be null."); @@ -80,15 +73,20 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const { } framework::DDim out_dims({x_dims[0], frame_size}); ctx->SetOutputDim("Hidden", out_dims); - ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); - ctx->SetOutputDim("BatchedOut", out_dims); ctx->ShareLoD("X", "Hidden"); - int xx_width; if (ctx->Attrs().Get("use_seq")) { xx_width = wx_dims[1]; } else { xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1]; + PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), + "Output(ReorderedH0) of GRU should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), + "Output(BatchedInput) of GRU should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"), + "Output(BatchedOut) of GRU should not be null."); + ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); + ctx->SetOutputDim("BatchedOut", out_dims); } ctx->SetOutputDim("XX", {x_dims[0], xx_width}); ctx->ShareLoD("X", "XX"); diff --git a/paddle/fluid/operators/fusion_lstm_op.cc b/paddle/fluid/operators/fusion_lstm_op.cc index 104e160e2d7069ec247cc51e927ce8824f1b69e8..ef23ab3f981786d33567619ad0194d21f31bdc8e 100644 --- a/paddle/fluid/operators/fusion_lstm_op.cc +++ b/paddle/fluid/operators/fusion_lstm_op.cc @@ -38,16 +38,6 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { "Output(Hidden) of LSTM should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Cell"), "Output(Cell) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), - "Output(BatchedInput) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"), - "Output(BatchedHidden) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"), - "Output(BatchedCell) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), - "Output(ReorderedH0) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"), - "Output(ReorderedC0) of LSTM should not be null."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); @@ -88,28 +78,36 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2."); PADDLE_ENFORCE_EQ(b_dims[0], 1, "The first dimension of Input(Bias) should be 1."); - - auto use_peepholes = ctx->Attrs().Get("use_peepholes"); - PADDLE_ENFORCE_EQ(b_dims[1], (use_peepholes ? 7 : 4) * frame_size, - "The second dimension of Input(Bias) should be " - "7 * %d if enable peepholes connection or" - "4 * %d if disable peepholes", - frame_size, frame_size); + PADDLE_ENFORCE_EQ( + b_dims[1], (ctx->Attrs().Get("use_peepholes") ? 7 : 4) * frame_size, + "The second dimension of Input(Bias) should be " + "7 * %d if enable peepholes connection or" + "4 * %d if disable peepholes", + frame_size, frame_size); framework::DDim out_dims({x_dims[0], frame_size}); ctx->SetOutputDim("Hidden", out_dims); ctx->SetOutputDim("Cell", out_dims); - ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); - ctx->SetOutputDim("BatchedHidden", out_dims); - ctx->SetOutputDim("BatchedCell", out_dims); ctx->ShareLoD("X", "Hidden"); ctx->ShareLoD("X", "Cell"); - int xx_width; if (ctx->Attrs().Get("use_seq")) { xx_width = wx_dims[1]; } else { xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1]; + PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), + "Output(BatchedInput) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"), + "Output(BatchedHidden) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"), + "Output(BatchedCell) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), + "Output(ReorderedH0) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"), + "Output(ReorderedC0) of LSTM should not be null."); + ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); + ctx->SetOutputDim("BatchedHidden", out_dims); + ctx->SetOutputDim("BatchedCell", out_dims); } ctx->SetOutputDim("XX", {x_dims[0], xx_width}); ctx->ShareLoD("X", "XX"); @@ -232,18 +230,18 @@ class FuisonLSTMKernel : public framework::OpKernel { act_cand = act_functor(act_cand_str); \ } -#define INIT_BASE_INPUT_OUTPUT \ - auto* x = ctx.Input("X"); \ - auto* h0 = ctx.Input("H0"); \ - auto* c0 = ctx.Input("C0"); \ - auto* wx = ctx.Input("WeightX"); \ - auto* wh = ctx.Input("WeightH"); \ - auto* bias = ctx.Input("Bias"); \ - auto* xx = ctx.Output("XX"); \ - auto* hidden_out = ctx.Output("Hidden"); \ - auto* cell_out = ctx.Output("Cell"); \ - bool use_peepholes = ctx.Attr("use_peepholes"); \ - bool is_reverse = ctx.Attr("is_reverse"); +#define INIT_BASE_INPUT_OUTPUT \ + auto* x = ctx.Input("X"); \ + auto* h0 = ctx.Input("H0"); \ + auto* c0 = ctx.Input("C0"); \ + auto* wx = ctx.Input("WeightX"); \ + auto* wh = ctx.Input("WeightH"); \ + auto* bias = ctx.Input("Bias"); \ + auto* xx = ctx.Output("XX"); \ + auto* hidden_out = ctx.Output("Hidden"); \ + auto* cell_out = ctx.Output("Cell"); \ + bool is_reverse = ctx.Attr("is_reverse"); \ + bool use_peepholes = ctx.Attr("use_peepholes"); #define INIT_BASE_SIZES \ auto x_dims = x->dims(); /* T x M*/ \ @@ -254,172 +252,183 @@ class FuisonLSTMKernel : public framework::OpKernel { const int D3 = D * 3; \ const int D4 = wh_dims[1]; +#define INIT_BASE_INPUT_DATAS \ + const T* x_data = x->data(); \ + const T* wx_data = wx->data(); \ + const T* wh_data = wh->data(); \ + /* diagonal weight*/ \ + const T* wc_data = bias->data() + D4; \ + /* for peephole only*/ \ + Tensor checked_cell; \ + T* checked_cell_data = nullptr; \ + auto place = ctx.GetPlace(); \ + if (use_peepholes) { \ + /* w_ic * Ct-1, w_fc * Ct-1 ; w_oc * Ct => ih*/ \ + checked_cell_data = checked_cell.mutable_data({2, D}, place); \ + } + +/// Compute LSTM +#define GEMM_WH_ADDON(bs, prev, out) \ + blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast(1), prev, D, \ + wh_data, D4, static_cast(1), out, D4) + +// gates: W_ch, W_ih, W_fh, W_oh +#define GET_Ct(ct_1, gates, ct) \ + /* C_t = C_t-1 * fgated + cand_gated * igated*/ \ + act_cand(D, gates, gates); \ + blas.VMUL(D, gates, gates + D, gates + D); \ + blas.VMUL(D, ct_1, gates + D2, gates + D2); \ + blas.VADD(D, gates + D, gates + D2, ct) + +#define GET_Ht(ct, gates, ht) \ + /* H_t = act_cell(C_t) * ogated */ \ + act_cell(D, ct, gates + D2); \ + blas.VMUL(D, gates + D2, gates + D3, ht) + +#define GET_Ct_NOH0C0(gates, ct) \ + /* C_t = igated * cgated*/ \ + act_gate(D, gates + D, gates + D); \ + act_cand(D, gates, gates); \ + blas.VMUL(D, gates, gates + D, ct) + +#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \ + GET_Ct_NOH0C0(gates, ct); \ + act_gate(D, gates + D3, gates + D3); \ + GET_Ht(ct, gates, ht) + +#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \ + GET_Ct_NOH0C0(gates, ct); \ + /* get outgated, put W_oc * C_t on igated */ \ + blas.VMUL(D, wc_data + D2, ct, gates + D); \ + blas.VADD(D, gates + D, gates + D3, gates + D3); \ + act_gate(D, gates + D3, gates + D3); \ + GET_Ht(ct, gates, ht) + +#define COMPUTE_CtHt(gates, ct_1, ct, ht) \ + act_gate(D3, gates + D, gates + D); \ + GET_Ct(ct_1, gates, ct); \ + GET_Ht(ct, gates, ht) + +#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht) \ + /* get fgated and igated*/ \ + blas.VMUL(D, wc_data, ct_1, checked_cell_data); \ + blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \ + blas.VADD(D2, checked_cell_data, gates + D, gates + D); \ + act_gate(D2, gates + D, gates + D); \ + GET_Ct(ct_1, gates, ct); \ + /* get ogated*/ \ + blas.VMUL(D, wc_data + D2, ct, gates + D); \ + blas.VADD(D, gates + D, gates + D3, gates + D3); \ + act_gate(D, gates + D3, gates + D3); \ + GET_Ht(ct, gates, ht) + void SeqCompute(const framework::ExecutionContext& ctx) const { using DeviceContext = paddle::platform::CPUDeviceContext; INIT_BASE_INPUT_OUTPUT INIT_BASE_SIZES INIT_VEC_FUNC + INIT_BASE_INPUT_DATAS auto x_lod = x->lod(); const int total_T = x_dims[0]; - const int N = x_lod[0].size() - 1; // batch size - - const T* x_data = x->data(); + const int N = x_lod[0].size() - 1; const T* h0_data = h0 ? h0->data() : nullptr; const T* c0_data = c0 ? c0->data() : nullptr; - const T* bias_data = bias->data(); - const T* wc_data = bias_data + D4; // w_ic, w_fc, w_oc - const T* wx_data = wx->data(); - const T* wh_data = wh->data(); - - T* xx_data = xx->mutable_data(ctx.GetPlace()); - T* hidden_out_data = hidden_out->mutable_data(ctx.GetPlace()); - T* cell_out_data = cell_out->mutable_data(ctx.GetPlace()); - - // use local variable - framework::DDim check_dims({3, D}); - Tensor checked_cell; // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct - auto checked_cell_data = - checked_cell.mutable_data(check_dims, ctx.GetPlace()); - + T* xx_data = xx->mutable_data(place); + T* h_out_data = hidden_out->mutable_data(place); + T* c_out_data = cell_out->mutable_data(place); auto blas = math::GetBlas(ctx); math::FCCompute(blas, total_T, D4, M, x_data, wx_data, xx_data, bias->data()); + int xx_offset = D4; int gate_offset = D; if (is_reverse) { const int offset = (total_T - 1) * D; xx_data = xx_data + offset * 4; - hidden_out_data = hidden_out_data + offset; - cell_out_data = cell_out_data + offset; + h_out_data = h_out_data + offset; + c_out_data = c_out_data + offset; xx_offset = -D4; gate_offset = -D; } - auto move_step = [&]() { - xx_data = xx_data + xx_offset; - hidden_out_data = hidden_out_data + gate_offset; - cell_out_data = cell_out_data + gate_offset; - }; - - for (int i = 0; i < N; ++i) { - int bid = is_reverse ? N - 1 - i : i; - int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; - const T* prev_c_data = nullptr; - const T* prev_h_data = nullptr; - - int tstart = 0; - if (h0_data) { - prev_h_data = h0_data + bid * D; - prev_c_data = c0_data + bid * D; - } else { - // If step == 0 and there is no initialized hidden state, that is to say - // the H0 is zeros. Then W_h * H_t-1 can be skipped - - // ~C_t - act_cand(D, xx_data, xx_data); - if (use_peepholes) { - // I_t, F_t - act_gate(D2, xx_data + D, xx_data + D); - } else { - // I_t, F_t, O_t - act_gate(D3, xx_data + D, xx_data + D); - } - // C_t = I_t * ~C_t - blas.VMUL(D, xx_data, xx_data + D, cell_out_data); - - if (use_peepholes) { - // + W_oc * C_t for peephole connection - blas.VMUL(D, wc_data + D2, cell_out_data, checked_cell_data + D2); - blas.VADD(D, xx_data + D3, checked_cell_data + D2, xx_data + D3); - // O_t - act_gate(D, xx_data + D3, xx_data + D3); - } - - // hidden out= act_state(cellout) * outgate - act_cell(D, cell_out_data, xx_data + D2); - // H_t = O_t * act_state(C_t) - blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data); - - // prev - prev_h_data = hidden_out_data; - prev_c_data = cell_out_data; - - tstart = 1; - move_step(); - } - - for (int step = tstart; step < seq_len; ++step) { - // + W_h * H_t-1 - blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast(1), - prev_h_data, D, wh_data, D4, static_cast(1), xx_data, D4); +#define MOVE_ONE_STEP \ + prev_h_data = h_out_data; \ + prev_c_data = c_out_data; \ + xx_data = xx_data + xx_offset; \ + h_out_data = h_out_data + gate_offset; \ + c_out_data = c_out_data + gate_offset + +#define PROCESS_H0C0_DEFINES \ + int bid = is_reverse ? N - 1 - i : i; \ + int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \ + const T* prev_c_data = nullptr; \ + const T* prev_h_data = nullptr; \ + int tstart = 0 + +#define PROCESS_H0C0_PEEPHOLE \ + PROCESS_H0C0_DEFINES; \ + if (h0_data) { \ + prev_h_data = h0_data + bid * D; \ + prev_c_data = c0_data + bid * D; \ + } else { \ + COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \ + MOVE_ONE_STEP; \ + tstart = 1; \ + } - // ~C_t - act_cand(D, xx_data, xx_data); +#define PROCESS_H0C0 \ + PROCESS_H0C0_DEFINES; \ + if (h0_data) { \ + prev_h_data = h0_data + bid * D; \ + prev_c_data = c0_data + bid * D; \ + } else { \ + COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \ + MOVE_ONE_STEP; \ + tstart = 1; \ + } - if (use_peepholes) { - // + W_ic|W_fc * C_t-1 for peephole connection - blas.VMUL(D, wc_data, prev_c_data, checked_cell_data); - blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D); - blas.VADD(D2, xx_data + D, checked_cell_data, xx_data + D); - // I_t, F_t - act_gate(D2, xx_data + D, xx_data + D); - } else { - // I_t, F_t, O_t - act_gate(D3, xx_data + D, xx_data + D); + if (use_peepholes) { + for (int i = 0; i < N; ++i) { + PROCESS_H0C0_PEEPHOLE + for (int step = tstart; step < seq_len; ++step) { + GEMM_WH_ADDON(1, prev_h_data, xx_data); + COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data); + MOVE_ONE_STEP; } - - // F_t * C_t-1 - blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2); - // I_t * ~C_t - blas.VMUL(D, xx_data, xx_data + D, xx_data + D); - // C_t = F_t * C_t-1 + I_t * ~C_t - blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data); - - if (use_peepholes) { - // + W_oc * C_t for peephole connection - blas.VMUL(D, wc_data + D2, cell_out_data, checked_cell_data + D2); - blas.VADD(D, xx_data + D3, checked_cell_data + D2, xx_data + D3); - // O_t - act_gate(D, xx_data + D3, xx_data + D3); + } + } else { + for (int i = 0; i < N; ++i) { + PROCESS_H0C0 + for (int step = tstart; step < seq_len; ++step) { + GEMM_WH_ADDON(1, prev_h_data, xx_data); + COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data); + MOVE_ONE_STEP; } - - // hidden out= act_state(cellout) * outgate - act_cell(D, cell_out_data, xx_data + D2); - // H_t = O_t * act_state(C_t) - blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data); - - // prev - prev_h_data = hidden_out_data; - prev_c_data = cell_out_data; - - move_step(); - } // for each step in batch - } // for each batch + } + } +#undef PROCESS_H0C0_DEFINES +#undef PROCESS_H0C0_PEEPHOLE +#undef PROCESS_H0C0 +#undef MOVE_ONE_STEP } void BatchCompute(const framework::ExecutionContext& ctx) const { using DeviceContext = platform::CPUDeviceContext; INIT_BASE_INPUT_OUTPUT - if (x->lod()[0].size() == 2) { // batch size == 1 + if (x->lod()[0].size() == 2) { SeqCompute(ctx); return; } INIT_BASE_SIZES INIT_VEC_FUNC + INIT_BASE_INPUT_DATAS auto* reordered_h0 = ctx.Output("ReorderedH0"); auto* reordered_c0 = ctx.Output("ReorderedC0"); auto* batched_input = ctx.Output("BatchedInput"); auto* batched_c_out = ctx.Output("BatchedCell"); auto* batched_h_out = ctx.Output("BatchedHidden"); - - const T* x_data = x->data(); - const T* wx_data = wx->data(); - const T* wh_data = wh->data(); - const T* bias_data = bias->data(); - const T* wc_data = bias_data + D4; // w_ic, w_fc, w_oc - auto place = ctx.GetPlace(); T* xx_data = xx->mutable_data(place); T* batched_input_data = batched_input->mutable_data(place); T* batched_c_out_data = batched_c_out->mutable_data(place); @@ -427,12 +436,6 @@ class FuisonLSTMKernel : public framework::OpKernel { hidden_out->mutable_data(place); cell_out->mutable_data(place); - // use local variable - framework::DDim check_dims({3, D}); - Tensor checked_cell; // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct - auto checked_cell_data = - checked_cell.mutable_data(check_dims, ctx.GetPlace()); - math::LoDTensor2BatchFunctor to_batch; auto& dev_ctx = ctx.template device_context(); auto blas = math::GetBlas(dev_ctx); @@ -454,27 +457,17 @@ class FuisonLSTMKernel : public framework::OpKernel { reordered_h0->Resize({max_bs, D}); reordered_c0->Resize({max_bs, D}); - T* prev_batch_h_data = nullptr; - T* prev_batch_c_data = nullptr; - T* cur_batch_in_data = batched_input_data; - T* cur_batch_h_out_data = batched_h_out_data; - T* cur_batch_c_out_data = batched_c_out_data; - - auto move_step = [&](int bs) { - cur_batch_in_data += bs * D4; - cur_batch_c_out_data += bs * D; - cur_batch_h_out_data += bs * D; - }; - int tstart = 0; + T* prev_h_data = nullptr; + T* prev_c_data = nullptr; if (h0) { // reorder h0, c0 T* reordered_h0_data = reordered_h0->mutable_data(place); T* reordered_c0_data = reordered_c0->mutable_data(place); const T* h0_data = h0->data(); const T* c0_data = c0->data(); - prev_batch_h_data = reordered_h0_data; - prev_batch_c_data = reordered_c0_data; + prev_h_data = reordered_h0_data; + prev_c_data = reordered_c0_data; size_t sz = sizeof(T) * D; for (int i = 0; i < max_bs; ++i) { std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz); @@ -483,123 +476,80 @@ class FuisonLSTMKernel : public framework::OpKernel { reordered_c0_data += D; } } else { - // Compute with no H0/C0 - T* cur_in_data = cur_batch_in_data; - T* cur_c_out_data = cur_batch_c_out_data; - T* cur_h_out_data = cur_batch_h_out_data; - - // If step == 0 and there is no initialized hidden state, that is to say - // the H0 is zeros. Then W_h * H_t-1 can be skiped - - for (int i = 0; i < max_bs; ++i) { // iterate each data in 1st batch - // ~C_t - act_cand(D, cur_in_data, cur_in_data); - - if (use_peepholes) { - // I_t, F_t - act_gate(D2, cur_in_data + D, cur_in_data + D); - } else { - // I_t, F_t, O_t - act_gate(D3, cur_in_data + D, cur_in_data + D); - } - - // C_t = I_t * ~C_t - blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data); - + // compute without h0, c0 + T* cur_in_data = batched_input_data; + T* cur_h_out_data = batched_h_out_data; + T* cur_c_out_data = batched_c_out_data; + for (int i = 0; i < max_bs; ++i) { + GET_Ct_NOH0C0(cur_in_data, cur_c_out_data); if (use_peepholes) { - // + W_oc * C_t for peephole connection - blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2); - blas.VADD(D, cur_in_data + D3, checked_cell_data + D2, - cur_in_data + D3); - // O_t - act_gate(D, cur_in_data + D3, cur_in_data + D3); + blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D); + blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3); } - - // hidden out= act_state(cellout) * outgate - act_cell(D, cur_c_out_data, cur_in_data + D2); - // H_t = O_t * act_state(C_t) - blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data); - - // move to next data in the same batch + act_gate(D, cur_in_data + D3, cur_in_data + D3); + GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data); cur_in_data += D4; cur_c_out_data += D; cur_h_out_data += D; } - - // move to data for next timestep - prev_batch_h_data = cur_batch_h_out_data; - prev_batch_c_data = cur_batch_c_out_data; - move_step(max_bs); tstart = 1; + prev_h_data = batched_h_out_data; + prev_c_data = batched_c_out_data; } - const auto& batch_starts = batched_lod[0]; const int max_seq_len = batch_starts.size() - 1; - for (int step = tstart; step < max_seq_len; ++step) { - const int cur_bs = batch_starts[step + 1] - batch_starts[step]; - // + W_h * H_t-1 - blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast(1), - prev_batch_h_data, D, wh_data, D4, static_cast(1), - cur_batch_in_data, D4); - - T* cur_in_data = cur_batch_in_data; - T* cur_c_out_data = cur_batch_c_out_data; - T* cur_h_out_data = cur_batch_h_out_data; - T* prev_c_data = prev_batch_c_data; // NULL if no C0 in step0 - T* prev_h_data = prev_batch_h_data; // NULL if no H0 in step0 - auto next_data_in_batch = [&]() { - cur_in_data += D4; - cur_c_out_data += D; - cur_h_out_data += D; - prev_c_data = prev_c_data ? prev_c_data + D : nullptr; - prev_h_data = prev_h_data ? prev_h_data + D : nullptr; - }; - - for (int i = 0; i < cur_bs; ++i) { // iterate each data in same batch - // ~C_t - act_cand(D, cur_in_data, cur_in_data); - - if (use_peepholes) { - // + W_ic|W_fc * C_t-1 for peephole connection - blas.VMUL(D, wc_data, prev_c_data, checked_cell_data); - blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D); - blas.VADD(D2, cur_in_data + D, checked_cell_data, cur_in_data + D); - // I_t, F_t - act_gate(D2, cur_in_data + D, cur_in_data + D); - } else { - // I_t, F_t, O_t - act_gate(D3, cur_in_data + D, cur_in_data + D); + const int offset = tstart * max_bs * D; + batched_input_data = batched_input_data + offset * 4; + batched_h_out_data = batched_h_out_data + offset; + batched_c_out_data = batched_c_out_data + offset; + +#define DEFINE_CUR \ + T* cur_in_data = batched_input_data; \ + T* cur_prev_c_data = prev_c_data; \ + T* cur_c_out_data = batched_c_out_data; \ + T* cur_h_out_data = batched_h_out_data + +#define MOVE_ONE_BATCH \ + cur_in_data += D4; \ + cur_prev_c_data += D; \ + cur_c_out_data += D; \ + cur_h_out_data += D + +#define MOVE_ONE_STEP \ + prev_c_data = batched_c_out_data; \ + prev_h_data = batched_h_out_data; \ + batched_c_out_data = cur_c_out_data; \ + batched_h_out_data = cur_h_out_data; \ + batched_input_data = cur_in_data + + if (use_peepholes) { + for (int step = tstart; step < max_seq_len; ++step) { + const int cur_bs = batch_starts[step + 1] - batch_starts[step]; + GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data); + DEFINE_CUR; + for (int i = 0; i < cur_bs; ++i) { + COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data, + cur_h_out_data); + MOVE_ONE_BATCH; } - - // F_t * C_t-1 - blas.VMUL(D, cur_in_data + D2, prev_c_data, cur_in_data + D2); - // I_t * ~C_t - blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D); - // C_t = F_t * C_t-1 + I_t * ~C_t - blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data); - - if (use_peepholes) { - // + W_oc * C_t for peephole connection - blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2); - blas.VADD(D, cur_in_data + D3, checked_cell_data + D2, - cur_in_data + D3); - // O_t - act_gate(D, cur_in_data + D3, cur_in_data + D3); + MOVE_ONE_STEP; + } + } else { + for (int step = tstart; step < max_seq_len; ++step) { + const int cur_bs = batch_starts[step + 1] - batch_starts[step]; + GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data); + DEFINE_CUR; + for (int i = 0; i < cur_bs; ++i) { + COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data, + cur_h_out_data); + MOVE_ONE_BATCH; } - - // hidden out= act_state(cellout) * outgate - act_cell(D, cur_c_out_data, cur_in_data + D2); - // H_t = O_t * act_state(C_t) - blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data); - - // move to next data in same batch - next_data_in_batch(); + MOVE_ONE_STEP; } - // move to data for next timestep - prev_batch_h_data = cur_batch_h_out_data; - prev_batch_c_data = cur_batch_c_out_data; - move_step(cur_bs); } +#undef MOVE_ONE_STEP +#undef MOVE_ONE_BATCH +#undef DEFINE_CUR math::Batch2LoDTensorFunctor to_seq; batched_h_out->set_lod(batched_lod); @@ -615,6 +565,16 @@ class FuisonLSTMKernel : public framework::OpKernel { BatchCompute(ctx); } } + +#undef COMPUTE_CtHt_PEEPHOLE +#undef COMPUTE_CtHt +#undef GET_Ct_NOH0C0 +#undef COMPUTE_CtHt_NOH0C0 +#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0 +#undef GET_Ht +#undef GET_Ct +#undef GEMM_WH_ADDON +#undef INIT_BASE_INPUT_DATAS #undef INIT_BASE_SIZES #undef INIT_BASE_INPUT_OUTPUT #undef INIT_VEC_FUNC diff --git a/paddle/fluid/operators/layer_norm_op.cu b/paddle/fluid/operators/layer_norm_op.cu index 0886c41a1b582881faf24f5531d414db4e4db71c..22343d7724b2f0dc01bff8c2274e3dd914bf70ef 100644 --- a/paddle/fluid/operators/layer_norm_op.cu +++ b/paddle/fluid/operators/layer_norm_op.cu @@ -67,27 +67,27 @@ template __global__ void LayerNormForward(const T *x, const T *scale, const T *bias, T *y, T *mean, T *var, float epsilon, int feature_size) { - using BlockReduce = cub::BlockReduce, BlockDim>; + using BlockReduce = cub::BlockReduce, BlockDim>; __shared__ typename BlockReduce::TempStorage temp_storage; int beg_idx = blockIdx.x * feature_size + threadIdx.x; int end_idx = (blockIdx.x + 1) * feature_size; // Step 1: Reduce to calculate mean and var - T mean_val = static_cast(0); - T var_val = static_cast(0); + double mean_val = 0; + double var_val = 0; for (int i = beg_idx; i < end_idx; i += BlockDim) { T tmp = x[i]; mean_val += tmp; var_val += (tmp * tmp); } auto pair = BlockReduce(temp_storage) - .Reduce(PairForLayerNorm(mean_val, var_val), - PairForLayerNormAddFunctor()); + .Reduce(PairForLayerNorm(mean_val, var_val), + PairForLayerNormAddFunctor()); if (threadIdx.x == 0) { auto tmp = pair.first_ / feature_size; - mean[blockIdx.x] = tmp; - var[blockIdx.x] = pair.second_ / feature_size - tmp * tmp; + mean[blockIdx.x] = static_cast(tmp); + var[blockIdx.x] = static_cast(pair.second_ / feature_size - tmp * tmp); } __syncthreads(); mean_val = mean[blockIdx.x]; diff --git a/paddle/fluid/operators/reshape_op.cc b/paddle/fluid/operators/reshape_op.cc index a1dfe39c3a4f84f5e4aaa2306813a7decf0e49ea..d72f85f2c44db2fa887732cfc05e1376a6a79e4a 100644 --- a/paddle/fluid/operators/reshape_op.cc +++ b/paddle/fluid/operators/reshape_op.cc @@ -246,6 +246,88 @@ class ReshapeGradKernel { } }; +// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape, +// the XShape is used to carry the shape and lod of X which will be used in +// reshape_grad, in this way, the framework can reuse the memory of X +// immediately the reshape_op is finished. +// Considering compatibility issues, we could not fix reshape_op +class Reshape2Op : public ReshapeOp { + public: + Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : ReshapeOp(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + ReshapeOp::InferShape(ctx); + PADDLE_ENFORCE(ctx->HasOutput("XShape"), + "Output(XShape) of ReshapeOp should not be null."); + const auto &x_dims = ctx->GetInputDim("X"); + std::vector xshape_dims(x_dims.size() + 1); + xshape_dims[0] = 0; + for (int i = 0; i < x_dims.size(); ++i) { + xshape_dims[i + 1] = x_dims[i]; + } + ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims)); + ctx->ShareLoD("X", /*->*/ "XShape"); + } +}; + +class Reshape2OpMaker : public ReshapeOpMaker { + public: + void Make() override { + ReshapeOpMaker::Make(); + AddOutput("XShape", + "XShape is just used to store the shape and lod of X, which will " + "be used in FlattenGradOp.") + .AsIntermediate(); + } +}; + +class Reshape2GradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("reshape2_grad"); + grad_op->SetInput("XShape", Output("XShape")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +class Reshape2GradOp : public framework::OperatorWithKernel { + public: + Reshape2GradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto xshape_dims = ctx->GetInputDim("XShape"); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->ShareLoD("XShape", framework::GradVarName("X")); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType( + ctx.Input(framework::GradVarName("Out")) + ->type()), + ctx.device_context()); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; @@ -261,6 +343,17 @@ REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel, ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel); +REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker, + ops::Reshape2GradMaker); +REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp); +REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double, + ops::ReshapeKernel, int, ops::ReshapeKernel, + int64_t, ops::ReshapeKernel); +REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel, + double, ops::ReshapeGradKernel, int, + ops::ReshapeGradKernel, int64_t, + ops::ReshapeGradKernel); + #ifdef PADDLE_WITH_CUDA REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int, ops::ReshapeKernel, @@ -269,4 +362,11 @@ REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel, double, ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel); +REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double, + ops::ReshapeKernel, int, ops::ReshapeKernel, + int64_t, ops::ReshapeKernel); +REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel, + double, ops::ReshapeGradKernel, int, + ops::ReshapeGradKernel, int64_t, + ops::ReshapeGradKernel); #endif diff --git a/paddle/fluid/operators/squeeze_op.cc b/paddle/fluid/operators/squeeze_op.cc index 8a683116b8054de12fc4419b5aa5fbc019b675bb..e389c6a65e1e8220685294931c4d08e6fd928b7f 100644 --- a/paddle/fluid/operators/squeeze_op.cc +++ b/paddle/fluid/operators/squeeze_op.cc @@ -126,15 +126,15 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault({}); AddComment(R"DOC( Squeeze Operator. - - Remove single-dimensional entries from the shape of a tensor. - Takes a parameter axes with a list of axes to squeeze. - If axes is not provided, all the single dimensions will be removed from the shape. + + Remove single-dimensional entries from the shape of a tensor. + Takes a parameter axes with a list of axes to squeeze. + If axes is not provided, all the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised. - + Examples: Case 1: - Given + Given X.shape = (1, 3, 1, 5) and axes = [0] @@ -144,7 +144,7 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker { Case 2: Given X.shape = (1, 3, 1, 5) - and + and axes = [] we get: Out.shape = (3, 5) @@ -181,6 +181,113 @@ class SqueezeGradOp : public framework::OperatorBase { } }; +// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze, +// the XShape is used to carry the shape and lod of X which will be used in +// squeeze_grad, in this way, the framework can reuse the memory of X +// immediately the squeeze2_op is finished. +// Considering compatibility issues, we could not fix squeeze2_op +class Squeeze2OpMaker : public SqueezeOpMaker { + public: + void Make() override { + SqueezeOpMaker::Make(); + AddOutput("XShape", + "XShape is just used to store the shape and lod of X, which will " + "be used in SqueezeGradOp.") + .AsIntermediate(); + } +}; + +class Squeeze2OpInferShape : public SqueezeOpInferShape { + public: + void operator()(framework::InferShapeContext *ctx) const override { + SqueezeOpInferShape::operator()(ctx); + PADDLE_ENFORCE(ctx->HasOutput("XShape"), + "Output(XShape) of Squeeze operator should not be null."); + const auto &x_dims = ctx->GetInputDim("X"); + std::vector xshape_dims(x_dims.size() + 1); + xshape_dims[0] = 0; + for (int i = 0; i < x_dims.size(); ++i) { + xshape_dims[i + 1] = x_dims[i]; + } + ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims)); + ctx->ShareLoD("X", /*->*/ "XShape"); + } +}; + +class Squeeze2Op : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto &axes = Attr>("axes"); + auto x_dims = scope.FindVar(Input("X"))->Get().dims(); + auto out_dims = Squeeze2OpInferShape::GetOutputShape(axes, x_dims); + + framework::AttributeMap attrs; + attrs["shape"] = framework::vectorize2int(out_dims); + // Invoke Reshape Op + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {Input("X")}}, {"Shape", {}}}, + {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs); + reshape_op->Run(scope, place); + } +}; + +class Squeeze2GradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("squeeze2_grad"); + grad_op->SetInput("XShape", Output("XShape")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +class Squeeze2GradInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + PADDLE_ENFORCE(context->HasInput("XShape"), + "Input(XShape) shouldn't be null."); + PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto xshape_dims = context->GetInputDim("XShape"); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + context->SetOutputDim(framework::GradVarName("X"), x_dims); + context->ShareLoD("XShape", framework::GradVarName("X")); + } +}; + +class Squeeze2GradOp : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto dx_name = Output(framework::GradVarName("X")); + auto dout_name = Input(framework::GradVarName("Out")); + auto xshape_name = Input("XShape"); + auto xshape_dims = + scope.FindVar(xshape_name)->Get().dims(); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + + framework::AttributeMap attrs; + attrs["shape"] = framework::vectorize2int(x_dims); + + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {dout_name}}, {"Shape", {}}}, + {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs); + reshape_op->Run(scope, place); + } +}; + } // namespace operators } // namespace paddle @@ -192,3 +299,8 @@ REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker, ops::SqueezeOpInferShape, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape); + +REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker, + ops::Squeeze2OpInferShape, ops::Squeeze2GradOpMaker); +REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp, + ops::Squeeze2GradInferShape); diff --git a/paddle/fluid/operators/transpose_op.cc b/paddle/fluid/operators/transpose_op.cc index 60556a564c25c08612447ebd47a4b432b8a12d29..6a9fc6611a8f8eaa6749aefac0673ccabaebbcfe 100644 --- a/paddle/fluid/operators/transpose_op.cc +++ b/paddle/fluid/operators/transpose_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/transpose_op.h" +#include #include namespace paddle { @@ -24,7 +25,7 @@ class TransposeOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; - void InferShape(framework::InferShapeContext* ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); auto x_dims = ctx->GetInputDim("X"); @@ -90,7 +91,7 @@ The behavior of this operator is similar to how `numpy.transpose` works. 2 &5 \end{pmatrix}$$ -- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is +- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is $[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$. )DOC"); @@ -101,7 +102,7 @@ class TransposeOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; - void InferShape(framework::InferShapeContext* ctx) const override { + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); @@ -113,6 +114,93 @@ class TransposeOpGrad : public framework::OperatorWithKernel { } }; +// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on +// transpose, the XShape is used to carry the shape and lod of X which +// will be used in transpose_grad, in this way, the framework can reuse +// the memory of X immediately the transpose2_op is finished. +// Considering compatibility issues, we could not fix transpose2_op +class Transpose2Op : public TransposeOp { + public: + Transpose2Op(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : TransposeOp(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + TransposeOp::InferShape(ctx); + PADDLE_ENFORCE(ctx->HasOutput("XShape"), + "Output(XShape) should not be null"); + const auto &in_dims = ctx->GetInputDim("X"); + std::vector x_shape_dim(in_dims.size() + 1); + x_shape_dim[0] = 0; + for (int i = 0; i < in_dims.size(); ++i) { + x_shape_dim[i + 1] = in_dims[i]; + } + ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim)); + ctx->ShareLoD("X", /*->*/ "XShape"); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } +}; + +class Transpose2OpMaker : public TransposeOpMaker { + public: + void Make() override { + TransposeOpMaker::Make(); + AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate(); + } +}; + +class Transpose2GradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("transpose2_grad"); + grad_op->SetInput("XShape", Output("XShape")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +class Transpose2OpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + if (ctx->HasOutput(framework::GradVarName("X"))) { + auto xshape_dim = ctx->GetInputDim("XShape"); + auto x_shape_dim = + framework::slice_ddim(xshape_dim, 1, xshape_dim.size()); + ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim); + ctx->ShareLoD("XShape", framework::GradVarName("X")); + } + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType( + ctx.Input(framework::GradVarName("Out")) + ->type()), + ctx.device_context()); + } +}; + } // namespace operators } // namespace paddle @@ -120,8 +208,20 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(transpose, ops::TransposeOp, ops::TransposeOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad); + REGISTER_OP_CPU_KERNEL( transpose, ops::TransposeKernel); REGISTER_OP_CPU_KERNEL( transpose_grad, ops::TransposeGradKernel); + +REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker, + ops::Transpose2GradMaker); +REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad); + +REGISTER_OP_CPU_KERNEL( + transpose2, + ops::TransposeKernel); +REGISTER_OP_CPU_KERNEL( + transpose2_grad, + ops::TransposeGradKernel); diff --git a/paddle/fluid/operators/transpose_op.cu.cc b/paddle/fluid/operators/transpose_op.cu.cc index bcd1fb631394bc33b6fc162cfa7cbb20d55a654b..c1b5a8b31be243fab3af06a18c8e51986c953700 100644 --- a/paddle/fluid/operators/transpose_op.cu.cc +++ b/paddle/fluid/operators/transpose_op.cu.cc @@ -21,3 +21,10 @@ REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL( transpose_grad, ops::TransposeGradKernel); + +REGISTER_OP_CUDA_KERNEL( + transpose2, + ops::TransposeKernel); +REGISTER_OP_CUDA_KERNEL( + transpose2_grad, + ops::TransposeGradKernel); diff --git a/paddle/fluid/operators/unsqueeze_op.cc b/paddle/fluid/operators/unsqueeze_op.cc index 0fc8d54f6400c9dfb6af1e764ed44e95195bfe6e..405943add238ac2d245df11127bfadb4899e855f 100644 --- a/paddle/fluid/operators/unsqueeze_op.cc +++ b/paddle/fluid/operators/unsqueeze_op.cc @@ -127,13 +127,13 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker { }); AddComment(R"DOC( Unsqueeze Operator. - - Insert single-dimensional entries to the shape of a tensor. - Takes one required argument axes, a list of dimensions that will be inserted. - Dimension indices in axes are as seen in the output tensor. - For example: - Given a tensor such that tensor with shape [3, 4, 5], + Insert single-dimensional entries to the shape of a tensor. + Takes one required argument axes, a list of dimensions that will be inserted. + Dimension indices in axes are as seen in the output tensor. + + For example: + Given a tensor such that tensor with shape [3, 4, 5], then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1] )DOC"); } @@ -168,6 +168,112 @@ class UnsqueezeGradOp : public framework::OperatorBase { } }; +// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on +// unsqueeze, the XShape is used to carry the shape and lod of X which +// will be used in unsqueeze_grad, in this way, the framework can reuse +// the memory of X immediately the unsqueeze2_op is finished. +// Considering compatibility issues, we could not fix unsqueeze2_op +class Unsqueeze2OpInferShape : public UnsqueezeOpInferShape { + public: + void operator()(framework::InferShapeContext *ctx) const override { + UnsqueezeOpInferShape::operator()(ctx); + PADDLE_ENFORCE(ctx->HasOutput("XShape"), + "Output(XShape) of Unsqueeze operator should not be null."); + const auto &x_dims = ctx->GetInputDim("X"); + std::vector xshape_dims(x_dims.size() + 1); + xshape_dims[0] = 0; + for (int i = 0; i < x_dims.size(); ++i) { + xshape_dims[i + 1] = x_dims[i]; + } + ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims)); + ctx->ShareLoD("X", /*->*/ "XShape"); + } +}; + +class Unsqueeze2OpMaker : public UnsqueezeOpMaker { + public: + void Make() override { + UnsqueezeOpMaker::Make(); + AddOutput("XShape", + "XShape is just used to store the shape and lod of X, which will " + "be used in UnsqueezeGradOp.") + .AsIntermediate(); + } +}; + +class Unsqueeze2Op : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto &axes = Attr>("axes"); + auto x_dims = scope.FindVar(Input("X"))->Get().dims(); + auto out_dims = Unsqueeze2OpInferShape::GetOutputShape(axes, x_dims); + + framework::AttributeMap attrs; + attrs["shape"] = framework::vectorize2int(out_dims); + // Invoke Reshape op. + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {Input("X")}}, {"Shape", {}}}, + {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs); + reshape_op->Run(scope, place); + } +}; + +class Unsqueeze2GradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("unsqueeze2_grad"); + grad_op->SetInput("XShape", Output("XShape")); + grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + grad_op->SetAttrMap(Attrs()); + return std::unique_ptr(grad_op); + } +}; + +class Unsqueeze2GradInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + PADDLE_ENFORCE(context->HasInput("XShape"), + "Input(XShape) shouldn't be null."); + PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto xshape_dims = context->GetInputDim("XShape"); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + context->SetOutputDim(framework::GradVarName("X"), x_dims); + context->ShareLoD("XShape", framework::GradVarName("X")); + } +}; + +class Unsqueeze2GradOp : public framework::OperatorBase { + public: + using OperatorBase::OperatorBase; + + private: + void RunImpl(const framework::Scope &scope, + const platform::Place &place) const override { + auto dx_name = Output(framework::GradVarName("X")); + auto dout_name = Input(framework::GradVarName("Out")); + auto xshape_name = Input("XShape"); + auto xshape_dims = + scope.FindVar(xshape_name)->Get().dims(); + auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size()); + + framework::AttributeMap attrs; + attrs["shape"] = framework::vectorize2int(x_dims); + + auto reshape_op = framework::OpRegistry::CreateOp( + "reshape2", {{"X", {dout_name}}, {"Shape", {}}}, + {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs); + reshape_op->Run(scope, place); + } +}; } // namespace operators } // namespace paddle @@ -180,3 +286,8 @@ REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp, ops::UnsqueezeGradInferShape); + +REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker, + ops::Unsqueeze2OpInferShape, ops::Unsqueeze2GradOpMaker); +REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp, + ops::Unsqueeze2GradInferShape); diff --git a/paddle/fluid/platform/dynload/dynamic_loader.cc b/paddle/fluid/platform/dynload/dynamic_loader.cc index 4fbfa6354ab45fed4839227a2a4be8fe147e5fd9..6a3ad2151081504fda2a3818c5f99ad47039d91d 100644 --- a/paddle/fluid/platform/dynload/dynamic_loader.cc +++ b/paddle/fluid/platform/dynload/dynamic_loader.cc @@ -121,6 +121,12 @@ static inline void* GetDsoHandleFromSearchPath(const std::string& search_root, if (nullptr == dso_handle) { LOG(WARNING) << "Failed to find dynamic library: " << dlPath << " (" << dlerror() << ")"; + if (dlPath.find("nccl") != std::string::npos) { + std::cout + << "You may need to install 'nccl2' from NVIDIA official website: " + << "https://developer.nvidia.com/nccl/nccl-download" + << "before install PaddlePaddle" << std::endl; + } dlPath = dso_name; dso_handle = GetDsoHandleFromDefaultPath(dlPath, dynload_flags); } diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 7199424b4709fbe9fc962cf98aea6223b9f3e51d..9ffde5df9673f192b8970ea832fd0328950969b2 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -115,6 +115,7 @@ function cmake_gen() { -DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DWITH_CONTRIB=${WITH_CONTRIB:-ON} + -DWITH_INFERENCE=${WITH_INFERENCE:-ON} -DWITH_ANAKIN=${WITH_ANAKIN:-OFF} -DPY_VERSION=${PY_VERSION:-2.7} ======================================== @@ -144,6 +145,7 @@ EOF -DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} \ -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \ -DWITH_CONTRIB=${WITH_CONTRIB:-ON} \ + -DWITH_INFERENCE=${WITH_INFERENCE:-ON} \ -DWITH_ANAKIN=${WITH_ANAKIN:-OFF} \ -DPY_VERSION=${PY_VERSION:-2.7} } @@ -498,7 +500,7 @@ EOF EOF if [[ ${WITH_GPU} == "ON" ]]; then - NCCL_DEPS="apt-get install -y --allow-downgrades libnccl2=2.1.2-1+cuda${CUDA_MAJOR} libnccl-dev=2.1.2-1+cuda${CUDA_MAJOR} &&" + NCCL_DEPS="apt-get install -y --allow-downgrades libnccl2=2.2.13-1+cuda${CUDA_MAJOR} libnccl-dev=2.2.13-1+cuda${CUDA_MAJOR} &&" else NCCL_DEPS="" fi diff --git a/python/paddle/dataset/image.py b/python/paddle/dataset/image.py index 920dbf3b4ebb0bc3d98c9ea986d7d039deed4a4c..19fc229e6fa84792f58aeeb00be09eb2401b19c7 100644 --- a/python/paddle/dataset/image.py +++ b/python/paddle/dataset/image.py @@ -104,7 +104,7 @@ def batch_images_from_tar(data_file, pickle.dump( output, open('%s/batch_%d' % (out_path, file_id), 'wb'), - protocol=pickle.HIGHEST_PROTOCOL) + protocol=2) file_id += 1 data = [] labels = [] @@ -113,9 +113,7 @@ def batch_images_from_tar(data_file, output['label'] = labels output['data'] = data pickle.dump( - output, - open('%s/batch_%d' % (out_path, file_id), 'wb'), - protocol=pickle.HIGHEST_PROTOCOL) + output, open('%s/batch_%d' % (out_path, file_id), 'wb'), protocol=2) with open(meta_file, 'a') as meta: for file in os.listdir(out_path): diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index d8c7cc08b652f91456f557b0296e85b9aebc9dd0..5f49d5bbff53096ece140a185f73722870924677 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -4025,10 +4025,12 @@ def transpose(x, perm, name=None): helper = LayerHelper('transpose', **locals()) out = helper.create_tmp_variable(x.dtype) + x_shape = helper.create_tmp_variable(x.dtype) helper.append_op( - type='transpose', + type='transpose2', inputs={'X': [x]}, - outputs={'Out': [out]}, + outputs={'Out': [out], + 'XShape': [x_shape]}, attrs={'axis': perm}) return out @@ -4520,13 +4522,15 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): "Each dimension size given in shape must not be negtive " "except one unknown dimension.") - helper = LayerHelper("reshape", **locals()) + helper = LayerHelper("reshape2", **locals()) out = helper.create_tmp_variable(dtype=x.dtype) + x_shape = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( - type="reshape", + type="reshape2", inputs=inputs, attrs={"shape": shape}, - outputs={"Out": out}) + outputs={"Out": out, + "XShape": x_shape}) return helper.append_activation(out) @@ -4570,11 +4574,13 @@ def squeeze(input, axes, name=None): """ helper = LayerHelper("squeeze", **locals()) out = helper.create_tmp_variable(dtype=input.dtype) + x_shape = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( - type="squeeze", + type="squeeze2", inputs={"X": input}, attrs={"axes": axes}, - outputs={"Out": out}) + outputs={"Out": out, + "XShape": x_shape}) return out @@ -4605,11 +4611,13 @@ def unsqueeze(input, axes, name=None): """ helper = LayerHelper("unsqueeze", **locals()) out = helper.create_tmp_variable(dtype=input.dtype) + x_shape = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( - type="unsqueeze", + type="unsqueeze2", inputs={"X": input}, attrs={"axes": axes}, - outputs={"Out": out}) + outputs={"Out": out, + "XShape": x_shape}) return out @@ -5811,10 +5819,12 @@ def flatten(x, axis=1, name=None): raise ValueError("The axis should be a int, and in range [0, rank(x)]") out = helper.create_tmp_variable(x.dtype) + x_shape = helper.create_tmp_variable(x.dtype) helper.append_op( - type='flatten', + type='flatten2', inputs={"X": x}, - outputs={'Out': out}, + outputs={'Out': out, + 'XShape': x_shape}, attrs={"axis": axis}) return out diff --git a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py index f6017a455df7e8bd197ef2563a759f843b5e7c73..e1368a3392a9cab3e82eff0a73eb225a52aa03bf 100644 --- a/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py +++ b/python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py @@ -47,14 +47,14 @@ def train_program(): loss = fluid.layers.square_error_cost(input=y_predict, label=y) avg_loss = fluid.layers.mean(loss) - return avg_loss + return [avg_loss, y_predict] def optimizer_func(): return fluid.optimizer.SGD(learning_rate=0.001) -def train(use_cuda, train_program, params_dirname): +def train(use_cuda, train_program, params_dirname, inference_model_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( @@ -74,6 +74,8 @@ def train(use_cuda, train_program, params_dirname): ''' if params_dirname is not None: trainer.save_params(params_dirname) + trainer.save_inference_model(inference_model_dirname, + ['x'], [1]) trainer.stop() trainer.train( @@ -99,15 +101,55 @@ def infer(use_cuda, inference_program, params_dirname=None): print("infer results: ", results[0]) +def infer_by_saved_model(use_cuda, save_dirname=None): + if save_dirname is None: + return + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + + inference_scope = fluid.core.Scope() + with fluid.scope_guard(inference_scope): + # Use fluid.io.load_inference_model to obtain the inference program desc, + # the feed_target_names (the names of variables that will be feeded + # data using feed operators), and the fetch_targets (variables that + # we want to obtain data from using fetch operators). + [inference_program, feed_target_names, + fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) + + # The input's dimension should be 2-D and the second dim is 13 + # The input data should be >= 0 + batch_size = 10 + + test_reader = paddle.batch( + paddle.dataset.uci_housing.test(), batch_size=batch_size) + + test_data = next(test_reader()) + test_feat = numpy.array( + [data[0] for data in test_data]).astype("float32") + test_label = numpy.array( + [data[1] for data in test_data]).astype("float32") + + assert feed_target_names[0] == 'x' + results = exe.run(inference_program, + feed={feed_target_names[0]: numpy.array(test_feat)}, + fetch_list=fetch_targets) + print("infer shape: ", results[0].shape) + print("infer results: ", results[0]) + print("ground truth: ", test_label) + + def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return # Directory for saving the trained model - params_dirname = "fit_a_line.inference.model" + params_dirname = "fit_a_line.model" + inference_model_dirname = "fit_a_line.inference_model" - train(use_cuda, train_program, params_dirname) + train(use_cuda, train_program, params_dirname, inference_model_dirname) infer(use_cuda, inference_program, params_dirname) + infer_by_saved_model(use_cuda, inference_model_dirname) class TestFitALine(unittest.TestCase): diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index 7abfa0a4be0dec9fe251704e22dfef1f932e7c5b..e3db316698398ff693157d583ad1410d10dcf81d 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -36,6 +36,7 @@ import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import core from test_dist_base import TestDistRunnerBase, runtime_main +import paddle.compat as cpt from paddle.compat import long_type import hashlib @@ -315,8 +316,9 @@ def pad_batch_data(insts, """ return_list = [] max_len = max(len(inst) for inst in insts) - num_token = reduce(lambda x, y: x + y, - [len(inst) for inst in insts]) if return_num_token else 0 + num_token = six.moves.reduce( + lambda x, y: x + y, + [len(inst) for inst in insts]) if return_num_token else 0 # Any token included in dict can be used to pad, since the paddings' loss # will be masked out by weights and make no effect on parameter gradients. inst_data = np.array( @@ -328,7 +330,7 @@ def pad_batch_data(insts, return_list += [inst_weight.astype("float32").reshape([-1, 1])] else: # position data inst_pos = np.array([ - range(1, len(inst) + 1) + [0] * (max_len - len(inst)) + list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst)) for inst in insts ]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] @@ -385,10 +387,11 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx, return_num_token=True) data_input_dict = dict( - zip(data_input_names, [ - src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, - trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight - ])) + list( + zip(data_input_names, [ + src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, + trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight + ]))) return data_input_dict, np.asarray([num_token], dtype="float32") @@ -561,7 +564,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, np.log(TrainTaskConfig.label_smooth_eps / ( ModelHyperParams.trg_vocab_size - 1) + 1e-20)) init = False - for pass_id in xrange(TrainTaskConfig.pass_num): + for pass_id in six.moves.xrange(TrainTaskConfig.pass_num): pass_start_time = time.time() for batch_id, data in enumerate(train_data()): if batch_id >= 5: @@ -587,11 +590,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) total_num_token += num_token - feed_kv_pairs = data_input_dict.items() + feed_kv_pairs = list(data_input_dict.items()) if TrainTaskConfig.local: - feed_kv_pairs += { + feed_kv_pairs += list({ lr_scheduler.learning_rate.name: lr_rate - }.items() + }.items()) feed_list.append(dict(feed_kv_pairs)) if not init: @@ -873,6 +876,7 @@ class DataReader(object): f = tarfile.open(fpaths[0], "r") for line in f.extractfile(tar_fname): + line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): @@ -882,8 +886,9 @@ class DataReader(object): if not os.path.isfile(fpath): raise IOError("Invalid file: %s" % fpath) - with open(fpath, "r") as f: + with open(fpath, "rb") as f: for line in f: + line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): @@ -892,8 +897,9 @@ class DataReader(object): @staticmethod def load_dict(dict_path, reverse=False): word_dict = {} - with open(dict_path, "r") as fdict: + with open(dict_path, "rb") as fdict: for idx, line in enumerate(fdict): + line = cpt.to_text(line) if reverse: word_dict[idx] = line.strip("\n") else: @@ -1034,7 +1040,7 @@ def multi_head_attention(queries, # size of the input as the output dimension size. return layers.reshape( x=trans_x, - shape=map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])) + shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]]))) def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): """ diff --git a/python/paddle/fluid/tests/unittests/op_test.py b/python/paddle/fluid/tests/unittests/op_test.py index 868df5d79424302700d9f82083cd7e4320c707ea..56a242b996f67aa4b9c858ab8aaeb1c1cd3bcf60 100644 --- a/python/paddle/fluid/tests/unittests/op_test.py +++ b/python/paddle/fluid/tests/unittests/op_test.py @@ -249,7 +249,7 @@ class OpTest(unittest.TestCase): outs, _ = self._calc_output(place) return outs - def _calc_output(self, place, parallel=False): + def _calc_output(self, place, parallel=False, no_check_set=None): program = Program() block = program.global_block() @@ -273,6 +273,8 @@ class OpTest(unittest.TestCase): # if not, fill the fetch_list by the user configured outputs in test. if len(fetch_list) == 0: for var_name, var in six.iteritems(outputs): + if no_check_set is not None and var_name in no_check_set: + continue if isinstance(var, list): for v in var: fetch_list.append(v) @@ -291,11 +293,17 @@ class OpTest(unittest.TestCase): return_numpy=False) return outs, fetch_list - def check_output_with_place(self, place, atol, equal_nan=False): - outs, fetch_list = self._calc_output(place) + def check_output_with_place(self, + place, + atol, + no_check_set=None, + equal_nan=False): + outs, fetch_list = self._calc_output(place, no_check_set=no_check_set) for out_name, out_dup in Operator.get_op_outputs(self.op_type): if out_name not in self.outputs: continue + if no_check_set is not None and out_name in no_check_set: + continue def find_actual(target_name, fetch_list): found = [ @@ -360,10 +368,10 @@ class OpTest(unittest.TestCase): places.append(core.CUDAPlace(0)) return places - def check_output(self, atol=1e-5, equal_nan=False): + def check_output(self, atol=1e-5, no_check_set=None, equal_nan=False): places = self._get_places() for place in places: - self.check_output_with_place(place, atol, equal_nan) + self.check_output_with_place(place, atol, no_check_set, equal_nan) def check_output_customized(self, checker): places = self._get_places() diff --git a/python/paddle/fluid/tests/unittests/test_dist_base.py b/python/paddle/fluid/tests/unittests/test_dist_base.py index 58875a1dd19fd91f6f2bed928397ee7f73302dff..c0f5da5a1ae43847dff6348ea5f3e3bfd5e89ab9 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_base.py +++ b/python/paddle/fluid/tests/unittests/test_dist_base.py @@ -55,6 +55,7 @@ class TestDistRunnerBase(object): pserver_prog = t.get_pserver_program(args.current_endpoint) startup_prog = t.get_startup_program(args.current_endpoint, pserver_prog) + place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) @@ -147,6 +148,8 @@ def runtime_main(test_class): import paddle.compat as cpt +import socket +from contextlib import closing class TestDistBase(unittest.TestCase): @@ -156,13 +159,19 @@ class TestDistBase(unittest.TestCase): def setUp(self): self._trainers = 2 self._pservers = 2 - self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124" + self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % ( + self._find_free_port(), self._find_free_port()) self._python_interp = "python" self._sync_mode = True self._mem_opt = False self._use_reduce = False self._setup_config() + def _find_free_port(self): + with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: + s.bind(('', 0)) + return s.getsockname()[1] + def start_pserver(self, model_file, check_error_log): ps0_ep, ps1_ep = self._ps_endpoints.split(",") ps_cmd = "%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist" diff --git a/python/paddle/fluid/tests/unittests/test_flatten_op.py b/python/paddle/fluid/tests/unittests/test_flatten_op.py index 17b01e03124e8007c51107b414c628d4bfc49c79..effa2a148eef8b0047b12c676803abb2871e8118 100644 --- a/python/paddle/fluid/tests/unittests/test_flatten_op.py +++ b/python/paddle/fluid/tests/unittests/test_flatten_op.py @@ -22,14 +22,17 @@ from op_test import OpTest class TestFlattenOp(OpTest): def setUp(self): - self.op_type = "flatten" + self.op_type = "flatten2" self.init_test_case() self.inputs = {"X": np.random.random(self.in_shape).astype("float32")} self.init_attrs() - self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)} + self.outputs = { + "Out": self.inputs["X"].reshape(self.new_shape), + "XShape": np.random.random(self.in_shape).astype("float32") + } def test_check_output(self): - self.check_output() + self.check_output(no_check_set=["XShape"]) def test_check_grad(self): self.check_grad(["X"], "Out") diff --git a/python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py b/python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py index 4767e9433ea74d5da83867d646f2a63c9a092668..de0c86f96db958eebd7e74346bec244f0c804ed9 100644 --- a/python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py +++ b/python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py @@ -53,12 +53,11 @@ class TestFusionLSTMOp(OpTest): self.M = 8 self.D = 16 self.has_initial_state = False + self.use_peepholes = False self.is_reverse = False self.act_gate = 'sigmoid' self.act_cell = 'tanh' self.act_cand = 'tanh' - self.use_peepholes = False - self.use_seq = False self.set_conf() T = sum(self.lod[0]) @@ -108,7 +107,6 @@ class TestFusionLSTMOp(OpTest): } self.attrs = { 'use_peepholes': self.use_peepholes, - 'use_seq': self.use_seq, 'is_reverse': self.is_reverse, 'gate_activation': self.act_gate, 'cell_activation': self.act_cell, @@ -178,50 +176,18 @@ class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp): self.is_reverse = True -class TestFusionLSTMOpPoopholesBS1(TestFusionLSTMOp): +class TestFusionLSTMOpPeepholesInitReverse(TestFusionLSTMOp): def set_conf(self): self.use_peepholes = True - self.lod = [[3]] - self.D = 16 - - -class TestFusionLSTMOpSeqInit(TestFusionLSTMOp): - def set_conf(self): - self.use_seq = True - self.has_initial_state = True - - -class TestFusionLSTMOpSeqReverse(TestFusionLSTMOp): - def set_conf(self): - self.use_seq = True - self.is_reverse = True - - -class TestFusionLSTMOpSeqInitReverse(TestFusionLSTMOp): - def set_conf(self): - self.use_seq = True self.has_initial_state = True self.is_reverse = True -class TestFusionLSTMOpSeqPeepholes(TestFusionLSTMOp): +class TestFusionLSTMOpPeepholesBS1(TestFusionLSTMOp): def set_conf(self): - self.use_seq = True self.use_peepholes = True - - -class TestFusionLSTMOpSeqPeepholesInit(TestFusionLSTMOp): - def set_conf(self): - self.use_seq = True - self.use_peepholes = True - self.has_initial_state = True - - -class TestFusionLSTMOpSeqPeepholesReverse(TestFusionLSTMOp): - def set_conf(self): - self.use_seq = True - self.use_peepholes = True - self.is_reverse = True + self.lod = [[2]] + self.D = 8 if __name__ == '__main__': diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py index 372ef748b2e704fd3858c382e048e51448ed3bd5..a49c5d9b43ae1bffa7cb57764db497f68030b151 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py @@ -85,6 +85,7 @@ class TestFetchOp(unittest.TestCase): assert not math.isnan(np.sum(ret[i])) and \ not math.isinf(np.sum(ret[i])) + @unittest.skip(reason="CI timeout") def test_fetch_op(self): tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16) tst_reader_iter = tst_reader() @@ -139,6 +140,7 @@ class TestFeedParallel(unittest.TestCase): if batch_id == 2: break + @unittest.skip(reason="CI timeout") def test_feed_op(self): os.environ['CPU_NUM'] = str(4) if core.is_compiled_with_cuda(): diff --git a/python/paddle/fluid/tests/unittests/test_prelu_op.py b/python/paddle/fluid/tests/unittests/test_prelu_op.py index 1e3e40d54a78045c8d8fdd9a3a3715107d1e7a80..48a6b0577b6787d2e1231fdcbe6d2c1bb46414ed 100644 --- a/python/paddle/fluid/tests/unittests/test_prelu_op.py +++ b/python/paddle/fluid/tests/unittests/test_prelu_op.py @@ -16,6 +16,7 @@ from __future__ import print_function import unittest import numpy as np +import six from op_test import OpTest @@ -62,17 +63,20 @@ class PReluTest(OpTest): # TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues -# class TestCase1(PReluTest): -# def initTestCase(self): -# self.attrs = {'mode': "all"} +if six.PY2: -# class TestCase2(PReluTest): -# def initTestCase(self): -# self.attrs = {'mode': "channel"} + class TestCase1(PReluTest): + def initTestCase(self): + self.attrs = {'mode': "all"} + + class TestCase2(PReluTest): + def initTestCase(self): + self.attrs = {'mode': "channel"} + + class TestCase3(PReluTest): + def initTestCase(self): + self.attrs = {'mode': "element"} -# class TestCase3(PReluTest): -# def initTestCase(self): -# self.attrs = {'mode': "element"} if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_reshape_op.py b/python/paddle/fluid/tests/unittests/test_reshape_op.py index 1de35dc35b0176b77eb2d9b25cd6ee4e645e56c3..0557593657e2e480a509902a07f25723b2c710b0 100644 --- a/python/paddle/fluid/tests/unittests/test_reshape_op.py +++ b/python/paddle/fluid/tests/unittests/test_reshape_op.py @@ -22,106 +22,39 @@ from op_test import OpTest class TestReshapeOp(OpTest): def setUp(self): - ori_shape = (2, 25) - new_shape = (5, 10) - - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(["X"], "Out") - - -class TestReshapeOpDimInfer1(OpTest): - def setUp(self): - ori_shape = (5, 10) - new_shape = (5, -1, 5) - - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(self.attrs["shape"])} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(["X"], "Out") - - -class TestReshapeOpDimInfer2(OpTest): - def setUp(self): - ori_shape = (2, 2, 6) - new_shape = (2, 0, 3, -1) - infered_shape = (2, 2, 3, -1) - - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(["X"], "Out") - - -class TestReshapeOpInplace(OpTest): - def setUp(self): - ori_shape = (2, 25) - new_shape = (5, 10) - - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(["X"], "Out") - - -class TestReshapeOpDimInferInplace1(OpTest): - def setUp(self): - ori_shape = (5, 10) - new_shape = (5, -1, 5) + self.init_data() + self.op_type = "reshape2" + self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} + self.attrs = {"shape": self.new_shape} + self.outputs = { + "Out": self.inputs["X"].reshape(self.infered_shape), + 'XShape': np.random.random(self.ori_shape).astype("float32") + } - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} + def init_data(self): + self.ori_shape = (2, 25) + self.new_shape = (5, 10) + self.infered_shape = (5, 10) def test_check_output(self): - self.check_output() + self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") -class TestReshapeOpDimInferInplace2(OpTest): - def setUp(self): - ori_shape = (2, 2, 6) - new_shape = (2, 0, 3, -1) - infered_shape = (2, 2, 3, -1) - - self.op_type = "reshape" - self.inputs = {"X": np.random.random(ori_shape).astype("float32")} - self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} +class TestReshapeOpDimInfer1(TestReshapeOp): + def init_data(self): + self.ori_shape = (5, 10) + self.new_shape = (5, -1, 5) + self.infered_shape = (5, -1, 5) - def test_check_output(self): - self.check_output() - def test_check_grad(self): - self.check_grad(["X"], "Out") +class TestReshapeOpDimInfer2(TestReshapeOp): + def init_data(self): + self.ori_shape = (2, 2, 6) + self.new_shape = (2, 0, 3, -1) + self.infered_shape = (2, 2, 3, -1) class TestReshapeOpWithInputShape(OpTest): @@ -130,20 +63,23 @@ class TestReshapeOpWithInputShape(OpTest): new_shape = (0, -1, 5) actual_shape = (2, 3, 5) - self.op_type = "reshape" + self.op_type = "reshape2" self.inputs = { "X": np.random.random(ori_shape).astype("float32"), "Shape": np.array( actual_shape, dtype="int32") } self.attrs = {"shape": new_shape} - self.outputs = {"Out": self.inputs["X"].reshape(actual_shape)} + self.outputs = { + "Out": self.inputs["X"].reshape(actual_shape), + 'XShape': np.random.random(ori_shape).astype("float32") + } def test_check_output(self): - self.check_output() + self.check_output(no_check_set=['XShape']) def test_check_grad(self): - self.check_grad(["X"], "Out") + self.check_grad(["X"], "Out", sum_outputs=["Out"]) if __name__ == "__main__": diff --git a/python/paddle/fluid/tests/unittests/test_squeeze_op.py b/python/paddle/fluid/tests/unittests/test_squeeze_op.py index 2be8e24a0fae6945351eb767ac924d7ca70848ab..204a4bb40196bd1fc2f5861aa31cf9560ea4d349 100644 --- a/python/paddle/fluid/tests/unittests/test_squeeze_op.py +++ b/python/paddle/fluid/tests/unittests/test_squeeze_op.py @@ -23,14 +23,17 @@ from op_test import OpTest # Correct: General. class TestSqueezeOp(OpTest): def setUp(self): - self.op_type = "squeeze" + self.op_type = "squeeze2" self.init_test_case() self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} self.init_attrs() - self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)} + self.outputs = { + "Out": self.inputs["X"].reshape(self.new_shape), + "XShape": np.random.random(self.ori_shape).astype("float32") + } def test_check_output(self): - self.check_output() + self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") diff --git a/python/paddle/fluid/tests/unittests/test_transpose_op.py b/python/paddle/fluid/tests/unittests/test_transpose_op.py index 0853f80b82030679d140f7fabdd42557c2374599..c30da2389d50d3b6bdf1f911aaed6ed71f274153 100644 --- a/python/paddle/fluid/tests/unittests/test_transpose_op.py +++ b/python/paddle/fluid/tests/unittests/test_transpose_op.py @@ -22,16 +22,19 @@ from op_test import OpTest class TestTransposeOp(OpTest): def setUp(self): self.initTestCase() - self.op_type = "transpose" + self.op_type = "transpose2" self.inputs = {'X': np.random.random(self.shape).astype("float32")} self.attrs = {'axis': list(self.axis)} - self.outputs = {'Out': self.inputs['X'].transpose(self.axis)} + self.outputs = { + 'XShape': np.random.random(self.shape).astype("float32"), + 'Out': self.inputs['X'].transpose(self.axis) + } def test_check_output(self): - self.check_output() + self.check_output(no_check_set=['XShape']) def test_check_grad(self): - self.check_grad(['X'], 'Out') + self.check_grad(['X'], 'Out', sum_outputs=['Out']) def initTestCase(self): self.shape = (3, 4) diff --git a/python/paddle/fluid/tests/unittests/test_unsqueeze_op.py b/python/paddle/fluid/tests/unittests/test_unsqueeze_op.py index a324438ba5a3c3b57fd956bd11189ef7d50267e2..14dd2bb06f9a18d0b15a4aee4e9e6bfdf8c41206 100644 --- a/python/paddle/fluid/tests/unittests/test_unsqueeze_op.py +++ b/python/paddle/fluid/tests/unittests/test_unsqueeze_op.py @@ -24,13 +24,16 @@ from op_test import OpTest class TestUnsqueezeOp(OpTest): def setUp(self): self.init_test_case() - self.op_type = "unsqueeze" + self.op_type = "unsqueeze2" self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} self.init_attrs() - self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)} + self.outputs = { + "Out": self.inputs["X"].reshape(self.new_shape), + "XShape": np.random.random(self.ori_shape).astype("float32") + } def test_check_output(self): - self.check_output() + self.check_output(no_check_set=["XShape"]) def test_check_grad(self): self.check_grad(["X"], "Out") diff --git a/python/paddle/fluid/trainer.py b/python/paddle/fluid/trainer.py index d094647afe1900809fc32cae93f777765f72c675..30cdfe4ad2c9892184862b70ff49417ce5a08516 100644 --- a/python/paddle/fluid/trainer.py +++ b/python/paddle/fluid/trainer.py @@ -431,6 +431,28 @@ class Trainer(object): exe = executor.Executor(self.place) io.save_persistables(exe, dirname=param_path) + def save_inference_model(self, param_path, feeded_var_names, + target_var_indexes): + """ + Save model for cpp inference into :code:`param_path`. + + Args: + param_path(str): The path to save parameters. + feeded_var_names(list(str)): The name of the vars that you + need to feed in before run program. + target_var_indexes(list(int)): the index of target var that + you need to return in trainer.train_func. + Returns: + None + """ + with self._prog_and_scope_guard(): + exe = executor.Executor(self.place) + target_vars = [ + self.train_func_outputs[index] for index in target_var_indexes + ] + io.save_inference_model(param_path, feeded_var_names, target_vars, + exe) + @contextlib.contextmanager def _prog_and_scope_guard(self): with framework.program_guard( diff --git a/python/paddle/fluid/transpiler/details/program_utils.py b/python/paddle/fluid/transpiler/details/program_utils.py index f0fafaa84a73d641ff6ceb74def6addaea759516..a83aa0f11eed9bfc1674d8d75dcfacc297f056b0 100644 --- a/python/paddle/fluid/transpiler/details/program_utils.py +++ b/python/paddle/fluid/transpiler/details/program_utils.py @@ -153,7 +153,7 @@ def block_to_code(block, block_idx): indent += 1 # sort all vars - all_vars = sorted(block.vars.iteritems(), key=lambda x: x[0]) + all_vars = sorted(six.iteritems(block.vars), key=lambda x: x[0]) for var in all_vars: print("{}{}".format(get_indent_space(indent), variable_to_code(var[1]))) diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 8a330e0dee7eda02d0858446778363f2235a3d73..d4d218d547a394a56c040ade2a9ba703b691b86b 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -300,7 +300,7 @@ class DistributeTranspiler(object): input_deps = grad_name_to_send_dummy_out.values() program.global_block().append_op( type="send_barrier", - inputs={"X": input_deps}, + inputs={"X": list(input_deps)}, outputs={"Out": send_barrier_out}, attrs={ "endpoints": pserver_endpoints, @@ -401,7 +401,7 @@ class DistributeTranspiler(object): Args: recv_vars (list): Variable list to recv for current trainer_id - eplist (list): A list of strings indicating + eplist (list): A list of strings indicating Returns: Program: trainer side startup program. @@ -455,7 +455,7 @@ class DistributeTranspiler(object): if len(splited_var) <= 1: continue # NOTE: if enable memory optimization, origin vars maybe removed. - if startup_program.global_block().vars.has_key(varname): + if varname in startup_program.global_block().vars: orig_param = startup_program.global_block().vars[varname] else: origin_param_var = self.origin_program.global_block().vars[ @@ -690,7 +690,7 @@ class DistributeTranspiler(object): Args: endpoint (str): current pserver endpoint. - + Returns: tuple: (main_program, startup_program), of type "Program" """ @@ -713,7 +713,7 @@ class DistributeTranspiler(object): endpoint (str): current pserver endpoint. pserver_program (Program): deprecated, call get_pserver_program first. startup_program (Program): deprecated, should pass startup_program - when initalizing + when initalizing Returns: Program: parameter server side startup program.