multiplex_op.cc 4.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/multiplex_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class MultiplexOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
29
                   "MultiInput(X) shouldn't be empty.");
Q
Qiao Longfei 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto ids_dim = ctx->GetInputDim("Ids");
32 33 34 35
    PADDLE_ENFORCE(
        ids_dim.size() == 2 && ids_dim[1] == 1,
        "The index tensor must be a vector with size batchSize x 1.");

Q
Qiao Longfei 已提交
36 37
    auto ins_dims = ctx->GetInputsDim("X");
    auto num_ins = ins_dims.size();
38 39 40
    PADDLE_ENFORCE(num_ins > 1,
                   "multiplex operator should have more than "
                   "one candidate input tensors.");
Y
Yibing Liu 已提交
41

Q
Qiao Longfei 已提交
42
    auto in_dim = ins_dims[0];
43 44
    PADDLE_ENFORCE(in_dim.size() >= 2,
                   "The rank of candidate tensors must be not less than 2.");
45
    for (size_t i = 1; i < num_ins; i++) {
Q
Qiao Longfei 已提交
46
      auto dim = ins_dims[i];
Y
Yibing Liu 已提交
47
      PADDLE_ENFORCE(in_dim == dim,
48
                     "All the candidate tensors must have the same size.");
Y
Yibing Liu 已提交
49
    }
Q
Qiao Longfei 已提交
50
    ctx->SetOutputDim("Out", in_dim);
Y
Yibing Liu 已提交
51
  }
Y
Yu Yang 已提交
52

53
 protected:
Y
Yu Yang 已提交
54 55 56 57
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type());
  }
Y
Yibing Liu 已提交
58 59 60 61
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
62 63
  MultiplexOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
Y
Yibing Liu 已提交
64
      : OpProtoAndCheckerMaker(proto, op_checker) {
65 66 67
    AddInput("Ids", "The index tensor of multiplex operator.");
    AddInput("X", "The candidate tensors of multiplex operator.")
        .AsDuplicable();
Y
Yibing Liu 已提交
68
    AddOutput("Out", "The output tensor of multiplex operator.");
K
kexinzhao 已提交
69 70
    AddComment(R"DOC(
Multiplex Operator.
Y
Yibing Liu 已提交
71

72
Multiplex multiple tensors according to the index provided by the index tensor.
Y
Yibing Liu 已提交
73

74 75
Ids: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2).
Y
Yibing Liu 已提交
76
For each index i from 0 to batchSize - 1, the output is the i-th row of the
77
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
78

79
For i-th row of the output tensor:
Y
Yibing Liu 已提交
80

K
kexinzhao 已提交
81
$$y[i] = x_{k}[i]$$
Y
Yibing Liu 已提交
82

K
kexinzhao 已提交
83
where `y` is the output tensor, `x_{k}` is the k-th input tensor,
84
and `k = Ids[i]`.
K
kexinzhao 已提交
85

Y
Yibing Liu 已提交
86 87 88 89 90 91
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
92
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
93

94
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
95 96
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
    PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
Y
Yibing Liu 已提交
97
                   "Output(X@Grad) should not be null.");
Q
Qiao Longfei 已提交
98 99 100 101
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    std::vector<framework::DDim> d_ins;
    auto ins = ctx->GetInputsDim("X");
102 103
    // No need to compute gradient for Input(Ids)
    for (size_t i = 0; i < ins.size(); i++) {
Q
Qiao Longfei 已提交
104
      d_ins.push_back(ins[i]);
Y
Yibing Liu 已提交
105
    }
Q
Qiao Longfei 已提交
106
    ctx->SetOutputsDim(framework::GradVarName("X"), d_ins);
Y
Yibing Liu 已提交
107
  }
Y
Yu Yang 已提交
108

109
 protected:
Y
Yu Yang 已提交
110 111 112 113
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type());
  }
Y
Yibing Liu 已提交
114 115 116 117 118 119
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

120 121 122
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<false>);
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
Y
Yibing Liu 已提交
123 124
REGISTER_OP_CPU_KERNEL(
    multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>);
125 126
REGISTER_OP_CPU_KERNEL(
    multiplex_grad,
Y
Yibing Liu 已提交
127
    ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>);