multiplex_op.cc 4.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/multiplex_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class MultiplexOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
29
                   "MultiInput(X) shouldn't be empty.");
Q
Qiao Longfei 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto ids_dim = ctx->GetInputDim("Ids");
32 33 34 35
    PADDLE_ENFORCE(
        ids_dim.size() == 2 && ids_dim[1] == 1,
        "The index tensor must be a vector with size batchSize x 1.");

Q
Qiao Longfei 已提交
36 37
    auto ins_dims = ctx->GetInputsDim("X");
    auto num_ins = ins_dims.size();
38 39 40
    PADDLE_ENFORCE(num_ins > 1,
                   "multiplex operator should have more than "
                   "one candidate input tensors.");
Y
Yibing Liu 已提交
41

Q
Qiao Longfei 已提交
42
    auto in_dim = ins_dims[0];
43 44
    PADDLE_ENFORCE(in_dim.size() >= 2,
                   "The rank of candidate tensors must be not less than 2.");
45
    for (size_t i = 1; i < num_ins; i++) {
Q
Qiao Longfei 已提交
46
      auto dim = ins_dims[i];
Y
Yibing Liu 已提交
47
      PADDLE_ENFORCE(in_dim == dim,
48
                     "All the candidate tensors must have the same size.");
Y
Yibing Liu 已提交
49
    }
Q
Qiao Longfei 已提交
50
    ctx->SetOutputDim("Out", in_dim);
Y
Yibing Liu 已提交
51
  }
Y
Yu Yang 已提交
52

53
 protected:
Y
Yu Yang 已提交
54 55 56 57
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type());
  }
Y
Yibing Liu 已提交
58 59 60 61
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
62 63
  MultiplexOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
Y
Yibing Liu 已提交
64
      : OpProtoAndCheckerMaker(proto, op_checker) {
65 66 67
    AddInput("Ids", "The index tensor of multiplex operator.");
    AddInput("X", "The candidate tensors of multiplex operator.")
        .AsDuplicable();
Y
Yibing Liu 已提交
68 69 70
    AddOutput("Out", "The output tensor of multiplex operator.");
    AddComment(R"DOC(Multiplex operator

71
Multiplex multiple tensors according to the index provided by the index tensor.
Y
Yibing Liu 已提交
72

73 74
Ids: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2).
Y
Yibing Liu 已提交
75
For each index i from 0 to batchSize - 1, the output is the i-th row of the
76
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
77

78
For i-th row of the output tensor:
Y
Yibing Liu 已提交
79

80
y[i] = x_{k}[i]
Y
Yibing Liu 已提交
81

82
where y is the output tensor. `x_{k}` is the k-th input tensor
83
and `k = Ids[i]`.
Y
Yibing Liu 已提交
84 85 86 87 88 89
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
90
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
91

92
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
93 94
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
    PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
Y
Yibing Liu 已提交
95
                   "Output(X@Grad) should not be null.");
Q
Qiao Longfei 已提交
96 97 98 99
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    std::vector<framework::DDim> d_ins;
    auto ins = ctx->GetInputsDim("X");
100 101
    // No need to compute gradient for Input(Ids)
    for (size_t i = 0; i < ins.size(); i++) {
Q
Qiao Longfei 已提交
102
      d_ins.push_back(ins[i]);
Y
Yibing Liu 已提交
103
    }
Q
Qiao Longfei 已提交
104
    ctx->SetOutputsDim(framework::GradVarName("X"), d_ins);
Y
Yibing Liu 已提交
105
  }
Y
Yu Yang 已提交
106

107
 protected:
Y
Yu Yang 已提交
108 109 110 111
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type());
  }
Y
Yibing Liu 已提交
112 113 114 115 116 117
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

118 119 120
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<false>);
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
Y
Yibing Liu 已提交
121 122
REGISTER_OP_CPU_KERNEL(
    multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>);
123 124
REGISTER_OP_CPU_KERNEL(
    multiplex_grad,
Y
Yibing Liu 已提交
125
    ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>);