anchor_cluster.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.anchor_cluster')

from scipy.cluster.vq import kmeans
import numpy as np
from tqdm import tqdm

from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config
M
Manuel Garcia 已提交
35
from ppdet.core.workspace import load_config, merge_config
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362


class BaseAnchorCluster(object):
    def __init__(self, n, cache_path, cache, verbose=True):
        """
        Base Anchor Cluster

        Args:
            n (int): number of clusters
            cache_path (str): cache directory path
            cache (bool): whether using cache
            verbose (bool): whether print results
        """
        super(BaseAnchorCluster, self).__init__()
        self.n = n
        self.cache_path = cache_path
        self.cache = cache
        self.verbose = verbose

    def print_result(self, centers):
        raise NotImplementedError('%s.print_result is not available' %
                                  self.__class__.__name__)

    def get_whs(self):
        whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
        shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
        if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
                shapes_cache_path):
            self.whs = np.load(whs_cache_path)
            self.shapes = np.load(shapes_cache_path)
            return self.whs, self.shapes
        whs = np.zeros((0, 2))
        shapes = np.zeros((0, 2))
        self.dataset.parse_dataset()
        roidbs = self.dataset.roidbs
        for rec in tqdm(roidbs):
            h, w = rec['h'], rec['w']
            bbox = rec['gt_bbox']
            wh = bbox[:, 2:4] - bbox[:, 0:2] + 1
            wh = wh / np.array([[w, h]])
            shape = np.ones_like(wh) * np.array([[w, h]])
            whs = np.vstack((whs, wh))
            shapes = np.vstack((shapes, shape))

        if self.cache:
            os.makedirs(self.cache_path, exist_ok=True)
            np.save(whs_cache_path, whs)
            np.save(shapes_cache_path, shapes)

        self.whs = whs
        self.shapes = shapes
        return self.whs, self.shapes

    def calc_anchors(self):
        raise NotImplementedError('%s.calc_anchors is not available' %
                                  self.__class__.__name__)

    def __call__(self):
        self.get_whs()
        centers = self.calc_anchors()
        if self.verbose:
            self.print_result(centers)
        return centers


class YOLOv2AnchorCluster(BaseAnchorCluster):
    def __init__(self,
                 n,
                 dataset,
                 size,
                 cache_path,
                 cache,
                 iters=1000,
                 verbose=True):
        super(YOLOv2AnchorCluster, self).__init__(
            n, cache_path, cache, verbose=verbose)
        """
        YOLOv2 Anchor Cluster

        Reference:
            https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py

        Args:
            n (int): number of clusters
            dataset (DataSet): DataSet instance, VOC or COCO
            size (list): [w, h]
            cache_path (str): cache directory path
            cache (bool): whether using cache
            iters (int): kmeans algorithm iters
            verbose (bool): whether print results
        """
        self.dataset = dataset
        self.size = size
        self.iters = iters

    def print_result(self, centers):
        logger.info('%d anchor cluster result: [w, h]' % self.n)
        for w, h in centers:
            logger.info('[%d, %d]' % (round(w), round(h)))

    def metric(self, whs, centers):
        wh1 = whs[:, None]
        wh2 = centers[None]
        inter = np.minimum(wh1, wh2).prod(2)
        return inter / (wh1.prod(2) + wh2.prod(2) - inter)

    def kmeans_expectation(self, whs, centers, assignments):
        dist = self.metric(whs, centers)
        new_assignments = dist.argmax(1)
        converged = (new_assignments == assignments).all()
        return converged, new_assignments

    def kmeans_maximizations(self, whs, centers, assignments):
        new_centers = np.zeros_like(centers)
        for i in range(centers.shape[0]):
            mask = (assignments == i)
            if mask.sum():
                new_centers[i, :] = whs[mask].mean(0)
        return new_centers

    def calc_anchors(self):
        self.whs = self.whs * np.array([self.size])
        # random select k centers
        whs, n, iters = self.whs, self.n, self.iters
        logger.info('Running kmeans for %d anchors on %d points...' %
                    (n, len(whs)))
        idx = np.random.choice(whs.shape[0], size=n, replace=False)
        centers = whs[idx]
        assignments = np.zeros(whs.shape[0:1]) * -1
        # kmeans
        if n == 1:
            return self.kmeans_maximizations(whs, centers, assignments)

        pbar = tqdm(range(iters), desc='Cluster anchors with k-means algorithm')
        for _ in pbar:
            # E step
            converged, assignments = self.kmeans_expectation(whs, centers,
                                                             assignments)
            if converged:
                logger.info('kmeans algorithm has converged')
                break
            # M step
            centers = self.kmeans_maximizations(whs, centers, assignments)
            ious = self.metric(whs, centers)
            pbar.desc = 'avg_iou: %.4f' % (ious.max(1).mean())

        centers = sorted(centers, key=lambda x: x[0] * x[1])
        return centers


class YOLOv5AnchorCluster(BaseAnchorCluster):
    def __init__(self,
                 n,
                 dataset,
                 size,
                 cache_path,
                 cache,
                 iters=300,
                 gen_iters=1000,
                 thresh=0.25,
                 verbose=True):
        super(YOLOv5AnchorCluster, self).__init__(
            n, cache_path, cache, verbose=verbose)
        """
        YOLOv5 Anchor Cluster

        Reference:
            https://github.com/ultralytics/yolov5/blob/master/utils/general.py

        Args:
            n (int): number of clusters
            dataset (DataSet): DataSet instance, VOC or COCO
            size (list): [w, h]
            cache_path (str): cache directory path
            cache (bool): whether using cache
            iters (int): iters of kmeans algorithm
            gen_iters (int): iters of genetic algorithm
            threshold (float): anchor scale threshold
            verbose (bool): whether print results
        """
        self.dataset = dataset
        self.size = size
        self.iters = iters
        self.gen_iters = gen_iters
        self.thresh = thresh

    def print_result(self, centers):
        whs = self.whs
        centers = centers[np.argsort(centers.prod(1))]
        x, best = self.metric(whs, centers)
        bpr, aat = (
            best > self.thresh).mean(), (x > self.thresh).mean() * self.n
        logger.info(
            'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
            (self.thresh, bpr, aat))
        logger.info(
            'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
            % (self.n, self.size, x.mean(), best.mean(),
               x[x > self.thresh].mean()))
        logger.info('%d anchor cluster result: [w, h]' % self.n)
        for w, h in centers:
            logger.info('[%d, %d]' % (round(w), round(h)))

    def metric(self, whs, centers):
        r = whs[:, None] / centers[None]
        x = np.minimum(r, 1. / r).min(2)
        return x, x.max(1)

    def fitness(self, whs, centers):
        _, best = self.metric(whs, centers)
        return (best * (best > self.thresh)).mean()

    def calc_anchors(self):
        self.whs = self.whs * self.shapes / self.shapes.max(
            1, keepdims=True) * np.array([self.size])
        wh0 = self.whs
        i = (wh0 < 3.0).any(1).sum()
        if i:
            logger.warn('Extremely small objects found. %d of %d'
                        'labels are < 3 pixels in width or height' %
                        (i, len(wh0)))

        wh = wh0[(wh0 >= 2.0).any(1)]
        logger.info('Running kmeans for %g anchors on %g points...' %
                    (self.n, len(wh)))
        s = wh.std(0)
        centers, dist = kmeans(wh / s, self.n, iter=self.iters)
        centers *= s

        f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
        pbar = tqdm(
            range(self.gen_iters),
            desc='Evolving anchors with Genetic Algorithm')
        for _ in pbar:
            v = np.ones(sh)
            while (v == 1).all():
                v = ((np.random.random(sh) < mp) * np.random.random() *
                     np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
            new_centers = (centers.copy() * v).clip(min=2.0)
            new_f = self.fitness(wh, new_centers)
            if new_f > f:
                f, centers = new_f, new_centers.copy()
                pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f

        return centers


def main():
    parser = ArgsParser()
    parser.add_argument(
        '--n', '-n', default=9, type=int, help='num of clusters')
    parser.add_argument(
        '--iters',
        '-i',
        default=1000,
        type=int,
        help='num of iterations for kmeans')
    parser.add_argument(
        '--gen_iters',
        '-gi',
        default=1000,
        type=int,
        help='num of iterations for genetic algorithm')
    parser.add_argument(
        '--thresh',
        '-t',
        default=0.25,
        type=float,
        help='anchor scale threshold')
    parser.add_argument(
        '--verbose', '-v', default=True, type=bool, help='whether print result')
    parser.add_argument(
        '--size',
        '-s',
        default=None,
        type=str,
        help='image size: w,h, using comma as delimiter')
    parser.add_argument(
        '--method',
        '-m',
        default='v2',
        type=str,
        help='cluster method, [v2, v5] are supported now')
    parser.add_argument(
        '--cache_path', default='cache', type=str, help='cache path')
    parser.add_argument(
        '--cache', action='store_true', help='whether use cache')
    FLAGS = parser.parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    # get dataset
    dataset = cfg['TrainDataset']
    if FLAGS.size:
        if ',' in FLAGS.size:
            size = list(map(int, FLAGS.size.split(',')))
            assert len(size) == 2, "the format of size is incorrect"
        else:
            size = int(FLAGS.size)
            size = [size, size]
    elif 'inputs_def' in cfg['TrainReader'] and 'image_shape' in cfg[
            'TrainReader']['inputs_def']:
        size = cfg['TrainReader']['inputs_def']['image_shape'][1:]
    else:
        raise ValueError('size is not specified')

    if FLAGS.method == 'v2':
        cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
                                      FLAGS.cache, FLAGS.iters, FLAGS.verbose)
    elif FLAGS.method == 'v5':
        cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
                                      FLAGS.cache, FLAGS.iters, FLAGS.gen_iters,
                                      FLAGS.thresh, FLAGS.verbose)
    else:
        raise ValueError('cluster method: %s is not supported' % FLAGS.method)

    anchors = cluster()


if __name__ == "__main__":
    main()