未验证 提交 63b9d6ee 编写于 作者: W wangxinxin08 提交者: GitHub

add anchor_cluster and mmodify docs (#2768)

上级 5298ee05
......@@ -108,6 +108,12 @@ Training PP-YOLO on 8 GPUs with following command(all commands should be run und
python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml &>ppyolo_dygraph.log 2>&1 &
```
optional: Run `tools/anchor_cluster.py` to get anchors suitable for your dataset, and modify the anchor setting in model configuration file and reader configuration file, such as `configs/ppyolo/_base_/ppyolo_tiny.yml` and `configs/ppyolo/_base_/ppyolo_tiny_reader.yml`.
``` bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo_tiny_650e_coco.yml -n 9 -s 320 -m v2 -i 1000
```
### 2. Evaluation
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
......
......@@ -92,6 +92,11 @@ PP-YOLO在Pascal VOC数据集上训练模型如下:
python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml &>ppyolo_dygraph.log 2>&1 &
```
可选:在训练之前使用`tools/anchor_cluster.py`得到适用于你的数据集的anchor,并注意修改模型配置文件和Reader配置文件中的anchor设置,如`configs/ppyolo/_base_/ppyolo_tiny.yml``configs/ppyolo/_base_/ppyolo_tiny_reader.yml`中anchor设置
```bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo_tiny_650e_coco.yml -n 9 -s 320 -m v2 -i 1000
```
### 2. 评估
使用单GPU通过如下命令一键式评估模型在COCO val2017数据集效果
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.anchor_cluster')
from scipy.cluster.vq import kmeans
import random
import numpy as np
from tqdm import tqdm
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.core.workspace import load_config, merge_config, create
class BaseAnchorCluster(object):
def __init__(self, n, cache_path, cache, verbose=True):
"""
Base Anchor Cluster
Args:
n (int): number of clusters
cache_path (str): cache directory path
cache (bool): whether using cache
verbose (bool): whether print results
"""
super(BaseAnchorCluster, self).__init__()
self.n = n
self.cache_path = cache_path
self.cache = cache
self.verbose = verbose
def print_result(self, centers):
raise NotImplementedError('%s.print_result is not available' %
self.__class__.__name__)
def get_whs(self):
whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
shapes_cache_path):
self.whs = np.load(whs_cache_path)
self.shapes = np.load(shapes_cache_path)
return self.whs, self.shapes
whs = np.zeros((0, 2))
shapes = np.zeros((0, 2))
self.dataset.parse_dataset()
roidbs = self.dataset.roidbs
for rec in tqdm(roidbs):
h, w = rec['h'], rec['w']
bbox = rec['gt_bbox']
wh = bbox[:, 2:4] - bbox[:, 0:2] + 1
wh = wh / np.array([[w, h]])
shape = np.ones_like(wh) * np.array([[w, h]])
whs = np.vstack((whs, wh))
shapes = np.vstack((shapes, shape))
if self.cache:
os.makedirs(self.cache_path, exist_ok=True)
np.save(whs_cache_path, whs)
np.save(shapes_cache_path, shapes)
self.whs = whs
self.shapes = shapes
return self.whs, self.shapes
def calc_anchors(self):
raise NotImplementedError('%s.calc_anchors is not available' %
self.__class__.__name__)
def __call__(self):
self.get_whs()
centers = self.calc_anchors()
if self.verbose:
self.print_result(centers)
return centers
class YOLOv2AnchorCluster(BaseAnchorCluster):
def __init__(self,
n,
dataset,
size,
cache_path,
cache,
iters=1000,
verbose=True):
super(YOLOv2AnchorCluster, self).__init__(
n, cache_path, cache, verbose=verbose)
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): kmeans algorithm iters
verbose (bool): whether print results
"""
self.dataset = dataset
self.size = size
self.iters = iters
def print_result(self, centers):
logger.info('%d anchor cluster result: [w, h]' % self.n)
for w, h in centers:
logger.info('[%d, %d]' % (round(w), round(h)))
def metric(self, whs, centers):
wh1 = whs[:, None]
wh2 = centers[None]
inter = np.minimum(wh1, wh2).prod(2)
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
def kmeans_expectation(self, whs, centers, assignments):
dist = self.metric(whs, centers)
new_assignments = dist.argmax(1)
converged = (new_assignments == assignments).all()
return converged, new_assignments
def kmeans_maximizations(self, whs, centers, assignments):
new_centers = np.zeros_like(centers)
for i in range(centers.shape[0]):
mask = (assignments == i)
if mask.sum():
new_centers[i, :] = whs[mask].mean(0)
return new_centers
def calc_anchors(self):
self.whs = self.whs * np.array([self.size])
# random select k centers
whs, n, iters = self.whs, self.n, self.iters
logger.info('Running kmeans for %d anchors on %d points...' %
(n, len(whs)))
idx = np.random.choice(whs.shape[0], size=n, replace=False)
centers = whs[idx]
assignments = np.zeros(whs.shape[0:1]) * -1
# kmeans
if n == 1:
return self.kmeans_maximizations(whs, centers, assignments)
pbar = tqdm(range(iters), desc='Cluster anchors with k-means algorithm')
for _ in pbar:
# E step
converged, assignments = self.kmeans_expectation(whs, centers,
assignments)
if converged:
logger.info('kmeans algorithm has converged')
break
# M step
centers = self.kmeans_maximizations(whs, centers, assignments)
ious = self.metric(whs, centers)
pbar.desc = 'avg_iou: %.4f' % (ious.max(1).mean())
centers = sorted(centers, key=lambda x: x[0] * x[1])
return centers
class YOLOv5AnchorCluster(BaseAnchorCluster):
def __init__(self,
n,
dataset,
size,
cache_path,
cache,
iters=300,
gen_iters=1000,
thresh=0.25,
verbose=True):
super(YOLOv5AnchorCluster, self).__init__(
n, cache_path, cache, verbose=verbose)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self.dataset = dataset
self.size = size
self.iters = iters
self.gen_iters = gen_iters
self.thresh = thresh
def print_result(self, centers):
whs = self.whs
centers = centers[np.argsort(centers.prod(1))]
x, best = self.metric(whs, centers)
bpr, aat = (
best > self.thresh).mean(), (x > self.thresh).mean() * self.n
logger.info(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
(self.thresh, bpr, aat))
logger.info(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
% (self.n, self.size, x.mean(), best.mean(),
x[x > self.thresh].mean()))
logger.info('%d anchor cluster result: [w, h]' % self.n)
for w, h in centers:
logger.info('[%d, %d]' % (round(w), round(h)))
def metric(self, whs, centers):
r = whs[:, None] / centers[None]
x = np.minimum(r, 1. / r).min(2)
return x, x.max(1)
def fitness(self, whs, centers):
_, best = self.metric(whs, centers)
return (best * (best > self.thresh)).mean()
def calc_anchors(self):
self.whs = self.whs * self.shapes / self.shapes.max(
1, keepdims=True) * np.array([self.size])
wh0 = self.whs
i = (wh0 < 3.0).any(1).sum()
if i:
logger.warn('Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height' %
(i, len(wh0)))
wh = wh0[(wh0 >= 2.0).any(1)]
logger.info('Running kmeans for %g anchors on %g points...' %
(self.n, len(wh)))
s = wh.std(0)
centers, dist = kmeans(wh / s, self.n, iter=self.iters)
centers *= s
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
pbar = tqdm(
range(self.gen_iters),
desc='Evolving anchors with Genetic Algorithm')
for _ in pbar:
v = np.ones(sh)
while (v == 1).all():
v = ((np.random.random(sh) < mp) * np.random.random() *
np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
new_centers = (centers.copy() * v).clip(min=2.0)
new_f = self.fitness(wh, new_centers)
if new_f > f:
f, centers = new_f, new_centers.copy()
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
return centers
def main():
parser = ArgsParser()
parser.add_argument(
'--n', '-n', default=9, type=int, help='num of clusters')
parser.add_argument(
'--iters',
'-i',
default=1000,
type=int,
help='num of iterations for kmeans')
parser.add_argument(
'--gen_iters',
'-gi',
default=1000,
type=int,
help='num of iterations for genetic algorithm')
parser.add_argument(
'--thresh',
'-t',
default=0.25,
type=float,
help='anchor scale threshold')
parser.add_argument(
'--verbose', '-v', default=True, type=bool, help='whether print result')
parser.add_argument(
'--size',
'-s',
default=None,
type=str,
help='image size: w,h, using comma as delimiter')
parser.add_argument(
'--method',
'-m',
default='v2',
type=str,
help='cluster method, [v2, v5] are supported now')
parser.add_argument(
'--cache_path', default='cache', type=str, help='cache path')
parser.add_argument(
'--cache', action='store_true', help='whether use cache')
FLAGS = parser.parse_args()
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
# get dataset
dataset = cfg['TrainDataset']
if FLAGS.size:
if ',' in FLAGS.size:
size = list(map(int, FLAGS.size.split(',')))
assert len(size) == 2, "the format of size is incorrect"
else:
size = int(FLAGS.size)
size = [size, size]
elif 'inputs_def' in cfg['TrainReader'] and 'image_shape' in cfg[
'TrainReader']['inputs_def']:
size = cfg['TrainReader']['inputs_def']['image_shape'][1:]
else:
raise ValueError('size is not specified')
if FLAGS.method == 'v2':
cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.verbose)
elif FLAGS.method == 'v5':
cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.gen_iters,
FLAGS.thresh, FLAGS.verbose)
else:
raise ValueError('cluster method: %s is not supported' % FLAGS.method)
anchors = cluster()
if __name__ == "__main__":
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册