operator.cc 36.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20 21
#include <sstream>
#include <string>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/op_proto_maker.h"
26
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/shape_inference.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
31

D
dzhwinter 已提交
32
DECLARE_bool(benchmark);
C
chengduoZH 已提交
33 34 35
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
37

Q
Qiao Longfei 已提交
38 39 40
namespace paddle {
namespace framework {

41 42 43 44 45 46
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
47

Q
qiaolongfei 已提交
48 49
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
50
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
51
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
52
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
53 54 55 56 57
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

58 59
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
67
    if (UNLIKELY(!tensor.IsInitialized())) {
68
      return DDim({-1});
69
    }
M
minqiyang 已提交
70 71 72 73 74 75 76
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
136 137
      return default_lod;
    }
M
minqiyang 已提交
138
    return tensor.lod();
Q
Qiao Longfei 已提交
139 140 141 142 143
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
144 145 146 147 148
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
149
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
150 151 152 153 154 155
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
156
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
157 158 159 160 161 162
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

163
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
164 165 166
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
167
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
168
      PADDLE_THROW("Cannot run operator on place %s", place);
169
#else
P
peizhilin 已提交
170 171
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
172
#endif
P
peizhilin 已提交
173
    }
P
peizhilin 已提交
174

P
peizhilin 已提交
175 176 177 178 179
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
180
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
181 182 183 184
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
185

P
peizhilin 已提交
186 187 188
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
G
Gabor Buella 已提交
189
      throw;
P
peizhilin 已提交
190
    }
191

P
peizhilin 已提交
192 193 194 195
    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
G
Gabor Buella 已提交
196
      throw;
P
peizhilin 已提交
197 198 199 200 201 202 203 204 205 206
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
G
Gabor Buella 已提交
207
    throw;
P
peizhilin 已提交
208 209
  } catch (...) {
    std::rethrow_exception(std::current_exception());
210
  }
211 212
}

213
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
214
  return inputs_.find(name) != inputs_.end();
215 216
}

217
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
218
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
219
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
220 221
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
222
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
223 224
}

Y
Yu Yang 已提交
225 226
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
227
  auto it = inputs_.find(name);
228 229
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
230
  return it->second;
Y
Yan Chunwei 已提交
231 232
}

233
bool OperatorBase::HasOutputs(const std::string& name) const {
234
  if (outputs_.find(name) != outputs_.end()) {
235 236 237 238 239 240
    return true;
  } else {
    return false;
  }
}

241
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
242
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
243
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
244 245
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
246
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
247 248
}

Y
Yu Yang 已提交
249 250
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
251
  auto it = outputs_.find(name);
252 253
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
254
  return it->second;
Y
Yan Chunwei 已提交
255 256
}

257
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
258
  std::stringstream ss;
Y
Yu Yang 已提交
259
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
260 261
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
262 263
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
264 265
      auto var_name = input.second[i];
      ss << var_name;
266
      if (scope) {
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273 274 275 276 277
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
278
        }
279
      }
Y
Yu Yang 已提交
280 281 282
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
283
    }
Y
Yu Yang 已提交
284
    ss << "]";
Y
Yu Yang 已提交
285 286
    ++it;
    if (it != inputs_.end()) {
287 288
      ss << ", ";
    }
Q
Qiao Longfei 已提交
289
  }
Y
Yu Yang 已提交
290
  ss << "}, outputs:{";
Y
Yu Yang 已提交
291 292
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
293 294
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
295 296
      auto var_name = output.second[i];
      ss << var_name;
297
      if (scope) {
Q
Qiao Longfei 已提交
298 299 300 301 302 303 304
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
305 306
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
307 308
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
309
        }
310
      }
Y
Yu Yang 已提交
311 312 313
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
314
    }
Y
Yu Yang 已提交
315
    ss << "]";
Y
Yu Yang 已提交
316 317
    ++it;
    if (it != outputs_.end()) {
318 319
      ss << ", ";
    }
Q
Qiao Longfei 已提交
320
  }
Y
Yu Yang 已提交
321
  ss << "}.";
Q
Qiao Longfei 已提交
322 323 324
  return ss.str();
}

Y
Yu Yang 已提交
325
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
326 327
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
328 329
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
330 331
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
332
}
333

Q
qijun 已提交
334 335
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
336
  for (auto& o : inputs_) {
Q
qijun 已提交
337 338 339 340 341 342
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
353
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
354 355

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
356
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
366 367
}

368 369 370
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
371
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
372 373

  for (auto& in : op_info->Proto().inputs()) {
374 375 376 377
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
378 379 380
  }

  for (auto& out : op_info->Proto().outputs()) {
381 382 383 384 385
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
402
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
403
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
404 405
}

C
chengduo 已提交
406
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
407 408 409 410
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
411
  } else {
Y
Yang Yang 已提交
412
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
413
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
414 415 416
  }
}

C
chengduo 已提交
417
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
418
  if (var->IsType<LoDTensor>()) {
419
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
420
  } else if (var->IsType<SelectedRows>()) {
421
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
422
  } else {
Y
Yang Yang 已提交
423
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
424
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
425 426 427
  }
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
460 461 462 463 464 465 466 467 468 469
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
470
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
471 472 473 474 475 476 477 478 479
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

480
template <>
481
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
482
  return Input<LoDTensor>(name);
483 484 485
}

template <>
486
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
487
    const std::string& name) const {
X
Xin Pan 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
501
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
502 503 504 505 506
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

507
template <>
508
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
509
  return Output<LoDTensor>(name);
510 511 512
}

template <>
513
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
514
    const std::string& name) const {
515 516 517 518 519
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
520
  std::vector<Tensor*> res;
521 522 523 524 525
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
526
                 });
527 528 529
  return res;
}

Y
Yu Yang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

545 546
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
547 548
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
549
      : op_(op), ctx_(ctx) {}
550 551

  bool HasInput(const std::string& name) const override {
552
    // has only one input
X
Xin Pan 已提交
553
    const auto& ins = ctx_.inputs;
554 555
    auto it = ins.find(name);
    if (it == ins.end()) {
556 557
      return false;
    }
558
    const auto& in = it->second;
X
Xin Pan 已提交
559
    if (in.size() == 0) return false;
T
tensor-tang 已提交
560
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
561
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
562
    return in[0] != nullptr;
563 564 565
  }

  bool HasOutput(const std::string& name) const override {
566
    // has only one output
X
Xin Pan 已提交
567
    const auto& outs = ctx_.outputs;
568 569
    auto it = outs.find(name);
    if (it == outs.end()) {
570 571
      return false;
    }
572
    const auto& out = it->second;
X
Xin Pan 已提交
573
    if (out.size() == 0) {
574 575
      return false;
    }
T
tensor-tang 已提交
576 577
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
578
    return out[0] != nullptr;
579 580 581
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
582 583
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
584
    if (it == ins.end() || it->second.empty()) {
585 586
      return false;
    }
X
Xin Pan 已提交
587 588
    for (auto& input : it->second) {
      if (input == nullptr) {
589 590 591 592 593 594 595
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
596 597
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
598
    if (it == outs.end() || it->second.empty()) {
599 600
      return false;
    }
X
Xin Pan 已提交
601 602
    for (auto& output : it->second) {
      if (output == nullptr) {
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

621 622
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
623 624 625 626 627 628 629 630 631
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
632 633

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
634
                   "The type of %s and %s is not the same.", in, out);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
653 654
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
655 656 657 658 659 660 661 662
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
663
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
664
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
665 666 667 668 669
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
670

M
mozga-intel 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
690 691
  }

C
chengduo 已提交
692 693 694 695 696
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

697 698
  bool IsRuntime() const override { return true; }

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
731 732 733 734 735 736 737 738 739 740
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

755
 protected:
X
Xin Pan 已提交
756
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
757
    PADDLE_ENFORCE_NOT_NULL(var);
758 759 760 761 762
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
763
      PADDLE_THROW(
X
Xin Pan 已提交
764
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
765
          "type_id is %s.",
S
sneaxiy 已提交
766
          ToTypeName(var->Type()));
F
fengjiayi 已提交
767 768 769
    }
  }

X
Xin Pan 已提交
770 771 772 773 774 775 776 777
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
778
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
779
    PADDLE_THROW("Only compile time support this method");
780 781
  }

X
Xin Pan 已提交
782
  void SetDim(Variable* var, const DDim& dim) {
783 784 785 786 787
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
788
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
789
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
790 791 792 793 794 795 796 797 798 799 800 801
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
802 803 804
    }
  }

F
fengjiayi 已提交
805 806
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
807
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
808 809
  }

X
Xin Pan 已提交
810 811 812 813 814 815 816 817 818 819 820
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
821 822 823
    return ToVarType(var->Type());
  }

824 825 826 827 828 829 830 831 832 833 834 835 836 837
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
838 839
  }

840
  const OperatorBase& op_;
X
Xin Pan 已提交
841
  const RuntimeContext& ctx_;
842 843
};

844 845
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
846 847 848 849
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
850 851
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
852 853 854
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
855
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
856
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
857
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
858 859
}

B
baojun-nervana 已提交
860
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
861 862 863
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
864 865 866
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
867 868 869 870 871 872 873 874 875 876
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

877 878
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
879
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
880
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
881
  auto* dev_ctx = pool.Get(place);
882

883 884 885 886
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
887 888
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
889 890
  }

Q
qiaolongfei 已提交
891 892
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
893
  auto expected_kernel_key = this->GetExpectedKernelType(
894
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
M
minqiyang 已提交
895
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
896

897
  auto kernel_iter = kernels.find(expected_kernel_key);
898
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
899
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
900 901
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
902
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
903 904 905 906 907
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
908 909 910 911 912
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

X
polish  
Xin Pan 已提交
913 914
  std::vector<KernelConfig>* kernel_configs =
      GetKernelConfig(expected_kernel_key);
915

Y
yuyang18 已提交
916 917 918
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
919
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
920

Y
yuyang18 已提交
921 922 923 924 925 926
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
927
  }
Q
QI JUN 已提交
928

L
luotao1 已提交
929
  if (!HasAttr(kAllKernelsMustComputeRuntimeShape)) {
930 931 932
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
933 934
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
935 936
  kernel_iter->second(
      ExecutionContext(*this, exec_scope, *dev_ctx, ctx, kernel_configs));
D
dzhwinter 已提交
937

Y
yuyang18 已提交
938 939 940
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
941 942
  }

D
dzhwinter 已提交
943
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
944
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
945
    dev_ctx->Wait();
D
dzhwinter 已提交
946
  }
C
chengduoZH 已提交
947 948 949

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
950
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
951 952
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
953
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
954
      } else if (var->IsType<framework::SelectedRows>()) {
955 956
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
957 958 959
      }
    }
  }
Q
Qiao Longfei 已提交
960
}
X
Xin Pan 已提交
961

Y
yuyang18 已提交
962 963 964 965
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
966
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
967 968 969
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
970
    auto* original_tensor =
C
chengduo 已提交
971
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
972
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
973 974
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
975
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
976 977 978 979
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
980
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
981
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
982 983
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
984 985
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
986 987 988 989
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
990
      auto* var = input_vars[i];
X
Xin Pan 已提交
991

Y
yuyang18 已提交
992
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
993
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
994 995 996
        continue;
      }

C
chengduo 已提交
997
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1015 1016
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1033
      }
1034
      if (!new_scope) {
Y
yuyang18 已提交
1035 1036 1037 1038
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1039
      input_vars[i] = trans_var;
1040

Y
yuyang18 已提交
1041
      Tensor out;
Y
yuyang18 已提交
1042
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1043 1044 1045 1046 1047 1048
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1049

1050
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1051
    const ExecutionContext& ctx) const {
1052 1053 1054
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1055
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1056 1057 1058
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1069 1070
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
1071
          proto::VarType::Type tmp = t->type();
1072
          PADDLE_ENFORCE(
1073
              tmp == data_type || data_type == dafault_data_type,
X
Xin Pan 已提交
1074
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
1075
              Type(), DataTypeToString(data_type), DataTypeToString(tmp));
Y
Yu Yang 已提交
1076 1077 1078 1079 1080
          data_type = tmp;
        }
      }
    }
  }
1081 1082 1083
  PADDLE_ENFORCE(data_type != dafault_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1084
}
1085

1086 1087 1088 1089 1090 1091 1092 1093
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1094 1095
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1096 1097
}

Q
Qiao Longfei 已提交
1098
}  // namespace framework
L
liaogang 已提交
1099
}  // namespace paddle