operator.cc 25.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#include <gflags/gflags.h>
#include <glog/logging.h>

17
#include <algorithm>
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
22
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/shape_inference.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/framework/shape_runtime_infer.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/var_type.h"
26
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
27

D
dzhwinter 已提交
28
DECLARE_bool(benchmark);
C
chengduoZH 已提交
29 30 31
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
32

Q
Qiao Longfei 已提交
33 34 35
namespace paddle {
namespace framework {

36 37 38 39 40 41
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
42

Q
qiaolongfei 已提交
43 44 45 46 47 48 49 50 51 52 53
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

54 55
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
56
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
57 58
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
59 60
  }

M
minqiyang 已提交
61 62
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
63
    if (UNLIKELY(!tensor.IsInitialized())) {
64
      return DDim({-1});
65
    }
M
minqiyang 已提交
66 67 68 69 70 71 72
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
73 74 75 76 77
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
78 79 80 81 82 83
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
84 85 86 87 88
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
89

M
minqiyang 已提交
90 91 92
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
93 94
      return "";
    }
M
minqiyang 已提交
95 96
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
97 98 99 100 101 102
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
103 104 105 106 107
  } else {
    return "";
  }
}

108 109 110 111 112 113
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
114 115
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
116 117 118 119 120
  }

  return -1;
}

Q
Qiao Longfei 已提交
121 122 123 124 125 126 127 128
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
129 130 131
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
132 133
      return default_lod;
    }
M
minqiyang 已提交
134
    return tensor.lod();
Q
Qiao Longfei 已提交
135 136 137 138 139
  } else {
    return default_lod;
  }
}

140
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
141 142
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
143
#ifndef PADDLE_WITH_CUDA
144
    PADDLE_THROW("Cannot run operator on place %s", place);
145
#else
146 147
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
148 149
#endif
  }
150 151 152 153
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::RecordEvent record_event(Type(), pool.Get(place));
  RunImpl(scope, place);
  VLOG(3) << place << " " << DebugStringEx(&scope);
154 155
}

156 157 158 159 160 161 162 163
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

164
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
165
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
166
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
167 168
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
169
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
170 171
}

Y
Yu Yang 已提交
172 173
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
174
  auto it = inputs_.find(name);
175 176
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
177
  return it->second;
Y
Yan Chunwei 已提交
178 179
}

180
bool OperatorBase::HasOutputs(const std::string& name) const {
181
  if (outputs_.find(name) != outputs_.end()) {
182 183 184 185 186 187
    return true;
  } else {
    return false;
  }
}

188
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
189
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
190
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
191 192
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
193
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
194 195
}

Y
Yu Yang 已提交
196 197
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
198
  auto it = outputs_.find(name);
199 200
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
201
  return it->second;
Y
Yan Chunwei 已提交
202 203
}

204
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
205
  std::stringstream ss;
Y
Yu Yang 已提交
206
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
207 208
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
209 210
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
211 212
      auto var_name = input.second[i];
      ss << var_name;
213
      if (scope) {
Q
Qiao Longfei 已提交
214 215 216 217 218 219 220 221 222 223 224
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
225
        }
226
      }
Y
Yu Yang 已提交
227 228 229
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
230
    }
Y
Yu Yang 已提交
231
    ss << "]";
Y
Yu Yang 已提交
232 233
    ++it;
    if (it != inputs_.end()) {
234 235
      ss << ", ";
    }
Q
Qiao Longfei 已提交
236
  }
Y
Yu Yang 已提交
237
  ss << "}, outputs:{";
Y
Yu Yang 已提交
238 239
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
240 241
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
242 243
      auto var_name = output.second[i];
      ss << var_name;
244
      if (scope) {
Q
Qiao Longfei 已提交
245 246 247 248 249 250 251 252 253
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
254
        }
255
      }
Y
Yu Yang 已提交
256 257 258
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
259
    }
Y
Yu Yang 已提交
260
    ss << "]";
Y
Yu Yang 已提交
261 262
    ++it;
    if (it != outputs_.end()) {
263 264
      ss << ", ";
    }
Q
Qiao Longfei 已提交
265
  }
Y
Yu Yang 已提交
266
  ss << "}.";
Q
Qiao Longfei 已提交
267 268 269
  return ss.str();
}

Y
Yu Yang 已提交
270
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
271 272
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
273 274
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
275 276
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
277
}
278

Q
qijun 已提交
279 280
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
281
  for (auto& o : inputs_) {
Q
qijun 已提交
282 283 284 285 286 287
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
288 289 290 291 292 293 294 295 296 297
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
298
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
299 300

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
301
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
302 303 304 305 306 307 308 309 310
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
311 312
}

313 314 315
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
316
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
317 318

  for (auto& in : op_info->Proto().inputs()) {
319 320 321 322
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
323 324 325
  }

  for (auto& out : op_info->Proto().outputs()) {
326 327 328 329 330
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

347 348 349 350
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

351
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
352
  if (var->IsType<LoDTensor>()) {
353
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
354
  } else if (var->IsType<SelectedRows>()) {
355
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
356
  } else {
Y
Yang Yang 已提交
357 358
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
359 360 361 362 363
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
364
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
365
  } else if (var->IsType<SelectedRows>()) {
366
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
367
  } else {
Y
Yang Yang 已提交
368 369
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
370 371 372
  }
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

405
template <>
406
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
407
  auto* var = InputVar(name);
408 409
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
410 411 412
}

template <>
413
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
414 415 416 417
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
418 419 420 421 422
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
423 424 425 426
  return res;
}

template <>
427
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
428
  auto var = OutputVar(name);
Q
QI JUN 已提交
429
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
430 431 432
}

template <>
433
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
434 435 436 437
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
438 439
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
440 441
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
442
                                         : GetMutableTensorFromVar(var);
443
                 });
444 445 446
  return res;
}

Y
Yu Yang 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

T
tensor-tang 已提交
462 463 464
bool RuntimeInferShapeContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
465
  }
T
tensor-tang 已提交
466 467 468 469
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
470
  }
T
tensor-tang 已提交
471 472 473 474 475 476
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto ipt = ins[0];
  auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
  return var != nullptr;
}
477

T
tensor-tang 已提交
478 479 480
bool RuntimeInferShapeContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
481
  }
T
tensor-tang 已提交
482 483 484 485 486 487 488 489 490 491 492
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto ipt = outs[0];
  auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
  return var != nullptr;
}
493

T
tensor-tang 已提交
494 495 496 497 498 499 500 501 502 503
bool RuntimeInferShapeContext::HasInputs(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto inputs = op_.Inputs(name);
  if (inputs.empty()) {
    return false;
  }
  for (auto& input : inputs) {
    if (scope_.FindVar(input) == nullptr) {
504 505 506
      return false;
    }
  }
T
tensor-tang 已提交
507 508
  return true;
}
509

T
tensor-tang 已提交
510 511 512
bool RuntimeInferShapeContext::HasOutputs(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
513
  }
T
tensor-tang 已提交
514 515 516
  auto outputs = op_.Outputs(name);
  if (outputs.empty()) {
    return false;
517
  }
T
tensor-tang 已提交
518 519 520 521 522 523 524
  for (auto& output : outputs) {
    if (scope_.FindVar(output) == nullptr) {
      return false;
    }
  }
  return true;
}
525

T
tensor-tang 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538
void RuntimeInferShapeContext::ShareLoD(const std::string& in,
                                        const std::string& out, size_t i,
                                        size_t j) const {
  PADDLE_ENFORCE_LT(i, Inputs(in).size());
  PADDLE_ENFORCE_LT(j, Outputs(out).size());
  Variable* in_var = scope_.FindVar(Inputs(in)[i]);
  Variable* out_var = scope_.FindVar(Outputs(out)[j]);
  if (!in_var->IsType<LoDTensor>()) return;
  PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                 "The %d-th output of Output(%s) must be LoDTensor.", j, out);
  auto in_tensor = in_var->Get<LoDTensor>();
  auto* out_tensor = out_var->GetMutable<LoDTensor>();
  out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
539

M
mozga-intel 已提交
540 541 542 543
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556
  // Fix me: ugly workaround below
  // Correct solution:
  //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
  //    layout of output tensor should be set "manually" in Compute()
  //    of each OPKernel. The reason layout should NOT be shared between
  //    input and output "automatically" (now by InferShape()->ShareLoD())
  //    is that layout transform may occur after InferShape().
  // Workaround:
  //    Skip set_layout() when input layout is kMKLDNN
  //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
  //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
  //    in Compute()
  if (in_tensor.layout() != DataLayout::kMKLDNN)
M
mozga-intel 已提交
557
#endif
D
dzhwinter 已提交
558
    out_tensor->set_layout(in_tensor.layout());
T
tensor-tang 已提交
559
}
560

T
tensor-tang 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574
void RuntimeInferShapeContext::ShareLayout(const std::string& in,
                                           const std::string& out, size_t i,
                                           size_t j) const {
  PADDLE_ENFORCE_LT(i, Inputs(in).size());
  PADDLE_ENFORCE_LT(j, Outputs(out).size());
  Variable* in_var = scope_.FindVar(Inputs(in)[i]);
  Variable* out_var = scope_.FindVar(Outputs(out)[j]);
  if (!in_var->IsType<LoDTensor>()) return;
  PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                 "The %d-th output of Output(%s) must be LoDTensor.", j, out);
  auto in_tensor = in_var->Get<LoDTensor>();
  auto* out_tensor = out_var->GetMutable<LoDTensor>();
  out_tensor->set_layout(in_tensor.layout());
}
F
fengjiayi 已提交
575

T
tensor-tang 已提交
576 577 578 579 580 581 582 583 584 585 586 587
DDim RuntimeInferShapeContext::GetDim(const std::string& name) const {
  Variable* var = scope_.FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(var);
  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    PADDLE_THROW(
        "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
        "type_id is %s.",
        name, var->Type().name());
588
  }
T
tensor-tang 已提交
589
}
590

T
tensor-tang 已提交
591 592 593 594 595 596 597 598 599 600
void RuntimeInferShapeContext::SetDim(const std::string& name,
                                      const DDim& dim) {
  Variable* var = scope_.FindVar(name);
  if (var->IsType<LoDTensor>()) {
    var->GetMutable<LoDTensor>()->Resize(dim);
  } else if (var->IsType<SelectedRows>()) {
    var->GetMutable<SelectedRows>()->set_height(dim[0]);
  } else {
    PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", name,
                 var->Type().name());
F
fengjiayi 已提交
601
  }
T
tensor-tang 已提交
602
}
603

C
chengduoZH 已提交
604 605 606 607 608
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
609
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
610 611 612 613 614 615 616 617
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

618 619
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
620 621
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
622
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
623
  auto* dev_ctx = pool.Get(place);
624

625 626 627 628
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
629 630
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
631 632
  }

Q
qiaolongfei 已提交
633 634
  OpKernelMap& kernels = kernels_iter->second;

635 636
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
637

638 639 640 641
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
642 643
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
644 645
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

646
  auto kernel_iter = kernels.find(expected_kernel_key);
647
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
648
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
649 650
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
651
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
652 653 654 655 656
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
657 658 659 660 661
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
662 663 664 665
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
666

Y
yuyang18 已提交
667 668 669 670 671 672
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
673
  }
Q
QI JUN 已提交
674

Y
yuyang18 已提交
675
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
676

Y
yuyang18 已提交
677 678 679
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
680 681
  }

D
dzhwinter 已提交
682
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
683
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
684
    dev_ctx->Wait();
D
dzhwinter 已提交
685
  }
C
chengduoZH 已提交
686 687 688

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
689
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
690 691 692
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
693 694
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
695 696 697
      }
    }
  }
Q
Qiao Longfei 已提交
698
}
Y
yuyang18 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
750
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
751 752 753 754 755 756
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
757

758
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
759 760 761
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
762
  std::string last_input_name;
Y
Yu Yang 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
777 778
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
779 780
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
781
          data_type = tmp;
782
          last_input_name = ipt_name;
Y
Yu Yang 已提交
783 784 785 786 787
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
788
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
789
}
790

791 792 793 794 795 796 797 798
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
799 800
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
801 802
}

Q
Qiao Longfei 已提交
803
}  // namespace framework
L
liaogang 已提交
804
}  // namespace paddle