fc_gru_fuse_pass.cc 6.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"

namespace paddle {
namespace framework {
namespace ir {

T
tensor-tang 已提交
23 24
static int BuildFusion(Graph* graph, const std::string& name_scope,
                       Scope* scope, bool with_fc_bias) {
T
tensor-tang 已提交
25 26 27
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35 36 37
  // Create pattern.
  patterns::FC fc_pattern(pattern, name_scope);
  patterns::GRU gru_pattern(pattern, name_scope);

  PDNode* x =
      pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();

  auto* fc_out = fc_pattern(x, with_fc_bias);
  fc_out->AsIntermediate();  // fc_out is a tmp var, will be removed after fuse.
  gru_pattern(fc_out);
T
tensor-tang 已提交
38 39

  // Create New OpDesc
Y
Yan Chunwei 已提交
40 41
  auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
                         Node* bias, Node* hidden, Node* fc_bias) {
T
tensor-tang 已提交
42 43 44

    OpDesc op_desc;
    op_desc.SetType("fusion_gru");
T
tensor-tang 已提交
45 46

#define NEW_NAME(x) name_scope + "/at." #x ".new"
Y
Yan Chunwei 已提交
47
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
T
tensor-tang 已提交
48 49 50
    SET_IN(X, x);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
T
tensor-tang 已提交
51
    if (with_fc_bias) {
Y
Yan Chunwei 已提交
52
      op_desc.SetInput("Bias", {NEW_NAME(bias) + bias->Name()});
T
tensor-tang 已提交
53 54 55
    } else {
      SET_IN(Bias, bias);
    }
T
tensor-tang 已提交
56
#undef SET_IN
T
tensor-tang 已提交
57
    op_desc.SetInput("H0", {});
Y
Yan Chunwei 已提交
58 59
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
    // TODO(TJ): This should be a option for infer
    op_desc.SetAttr("use_seq", true);

#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
    SET_IMTERMEDIATE_OUT(ReorderedH0);
    SET_IMTERMEDIATE_OUT(XX);
    SET_IMTERMEDIATE_OUT(BatchedInput);
    SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT

    auto* op = graph->CreateOpNode(&op_desc);
    PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
    auto* scope = graph->Get<Scope*>(kParamScopeAttr);
    PADDLE_ENFORCE(scope);
T
tensor-tang 已提交
74
    if (with_fc_bias) {
T
tensor-tang 已提交
75
      // Fusion GRU bias = fcbias + grubias
Y
Yan Chunwei 已提交
76
      auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias->Name());
T
tensor-tang 已提交
77 78 79
      auto* out_bias_tensor =
          fusion_bias_var->GetMutable<framework::LoDTensor>();
      PADDLE_ENFORCE(fusion_bias_var);
Y
Yan Chunwei 已提交
80 81
      auto* gru_bias_var = scope->FindVar(bias->Name());
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
T
tensor-tang 已提交
82
      PADDLE_ENFORCE(gru_bias_var);
T
tensor-tang 已提交
83
      PADDLE_ENFORCE(fc_bias_var);
T
tensor-tang 已提交
84 85 86
      const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
      const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
      // new bias = fc bias + gru bias
T
tensor-tang 已提交
87 88 89
      out_bias_tensor->Resize(gru_bias_tenosr.dims());
      auto* data = out_bias_tensor->mutable_data<float>(platform::CPUPlace());
      for (int i = 0; i < out_bias_tensor->numel(); i++) {
T
tensor-tang 已提交
90 91 92 93 94 95
        data[i] =
            fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i];
      }
    }
#undef GET_NODE

T
tensor-tang 已提交
96 97 98 99 100 101 102 103
#define NEW_IMTERMEDIATE_OUT(key) \
  scope->Var(NEW_NAME(key))->GetMutable<framework::LoDTensor>()
    NEW_IMTERMEDIATE_OUT(ReorderedH0);
    NEW_IMTERMEDIATE_OUT(XX);
    NEW_IMTERMEDIATE_OUT(BatchedInput);
    NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
T
tensor-tang 已提交
104

Y
Yan Chunwei 已提交
105 106 107 108 109
    IR_NODE_LINK_TO(x, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
    IR_NODE_LINK_TO(bias, op);  // actually should link to new bias if have
    IR_NODE_LINK_TO(op, hidden);
T
tensor-tang 已提交
110 111 112 113 114 115 116
    // h0?
    return op;
  };

  int fusion_count{0};
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
117 118 119 120 121 122 123 124
    auto* x_n = subgraph.at(x);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
T
tensor-tang 已提交
125
    // nodes need be removed
Y
Yan Chunwei 已提交
126 127 128
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchGate, gru_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchGate, gru_pattern);
T
tensor-tang 已提交
129 130

    if (with_fc_bias) {
Y
Yan Chunwei 已提交
131 132 133 134 135
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);

      gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
T
tensor-tang 已提交
136 137
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
138 139
          {mul, gru, elementwise_add, fc_bias, fc_out, mul_out, BatchGate,
           BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
140 141
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
Y
Yan Chunwei 已提交
142
      gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
T
tensor-tang 已提交
143
      // Remove unneeded nodes.
T
tensor-tang 已提交
144
      std::unordered_set<const Node*> marked_nodes(
Y
Yan Chunwei 已提交
145
          {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
T
tensor-tang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      GraphSafeRemoveNodes(graph, marked_nodes);
    }
#undef GET_NODE

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

std::unique_ptr<ir::Graph> MulGRUFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  FusePassBase::Init(name_scope_, graph.get());

  int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
                                 false /*with_fc_bias*/);

  AddStatis(fusion_count);
  return graph;
}

std::unique_ptr<ir::Graph> FCGRUFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  FusePassBase::Init(name_scope_, graph.get());

  int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
                                 true /*with_fc_bias*/);

  AddStatis(fusion_count);
  return graph;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

T
tensor-tang 已提交
184 185
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);