提交 f057077c 编写于 作者: T tensor-tang

add fuse fc gru pass

上级 09016df8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
namespace paddle {
namespace framework {
namespace ir {
std::string GenNodeName(const std::string& prefix, const std::string& name) {
return prefix + "/" + name;
}
void BuildPattern(PDPattern* pattern, const std::string& name_scope,
bool with_fc_bias) {
PDNode* x = pattern->NewNode(name_scope, "x")
->assert_is_op_input("mul")
->assert_var_not_persistable();
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
patterns::GRU(pattern, name_scope, fc_out);
VLOG(3) << "\n" << pattern->DotString();
}
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
BuildPattern(pattern, name_scope, with_fc_bias);
// Create New OpDesc
auto gru_creater = [&](int gru, int x, int weight_x, int weight_h, int bias,
int hidden, int fc_bias) {
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
GET_NODE(x);
GET_NODE(weight_x);
GET_NODE(weight_h);
GET_NODE(bias);
GET_NODE(hidden);
GET_NODE(gru);
OpDesc op_desc;
op_desc.SetType("fusion_gru");
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
SET_IN(X, x);
SET_IN(WeightX, weight_x);
SET_IN(WeightH, weight_h);
SET_IN(Bias, bias);
#undef SET_IN
if (with_fc_bias) {
// Add FC-bias with LSTM-bias and create a new weight
PADDLE_ENFORCE(scope);
const std::string& new_bias_var = name_scope + "_bias.new";
auto* bias_var = scope->Var(new_bias_var);
PADDLE_ENFORCE(bias_var);
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
auto* gru_bias_var = scope->FindVar(bias_n->Name());
PADDLE_ENFORCE(gru_bias_var);
const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
bias_tensor->Resize(gru_bias_tenosr.dims());
GET_NODE(fc_bias);
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
// new bias = fc bias + gru bias
auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());
for (int i = 0; i < bias_tensor->numel(); i++) {
data[i] =
fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i];
}
op_desc.SetInput("Bias", {new_bias_var});
}
#undef GET_NODE
op_desc.SetInput("H0", {});
op_desc.SetOutput("Hidden", {hidden_n->Name()});
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse"));
// TODO(TJ): This should be a option for infer
op_desc.SetAttr("use_seq", true);
// Create temp variables.
// TODO(TJ): clean code
scope->Var(name_scope + "/ReorderedH0.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/XX.new")->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchedInput.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchedOut.new")
->GetMutable<framework::LoDTensor>();
op_desc.SetOutput("ReorderedH0", {name_scope + "/ReorderedH0.new"});
op_desc.SetOutput("XX", {name_scope + "/XX.new"});
op_desc.SetOutput("BatchedInput", {name_scope + "/BatchedInput.new"});
op_desc.SetOutput("BatchedOut", {name_scope + "/BatchedOut.new"});
auto* op = graph->CreateOpNode(&op_desc);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
IR_NODE_LINK_TO(x_n, op);
IR_NODE_LINK_TO(weight_x_n, op);
IR_NODE_LINK_TO(weight_h_n, op);
IR_NODE_LINK_TO(bias_n, op);
IR_NODE_LINK_TO(op, hidden_n);
// h0?
return op;
};
int fusion_count{0};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
PADDLE_ENFORCE(name__##n); \
PADDLE_ENFORCE(subgraph.count(name__##n)); \
Node* name__##_n = subgraph.at(name__##n); \
int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE(x);
GET_NODE(w);
GET_NODE(mul);
GET_NODE(fc_out);
GET_NODE(Weight);
GET_NODE(gru);
GET_NODE(Bias);
GET_NODE(Hidden);
if (with_fc_bias) {
GET_NODE(fc_bias);
GET_NODE(elementwise_add);
gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul_n, gru_n, elementwise_add_n});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
gru_creater(gru, x, w, Weight, Bias, Hidden, -1);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes({mul_n, gru_n});
GraphSafeRemoveNodes(graph, marked_nodes);
}
#undef GET_NODE
++fusion_count;
};
gpd(graph, handler);
return fusion_count;
}
std::unique_ptr<ir::Graph> MulGRUFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init(name_scope_, graph.get());
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
false /*with_fc_bias*/);
AddStatis(fusion_count);
return graph;
}
std::unique_ptr<ir::Graph> FCGRUFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init(name_scope_, graph.get());
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
true /*with_fc_bias*/);
AddStatis(fusion_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCGRUFusePass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
// The MulGRUFusePass and MulGRUFusePass will fuse to the same FusionGRU op.
class FCGRUFusePass : public FusePassBase {
public:
virtual ~FCGRUFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"fc_gru_fuse"};
};
// Just FC without bias
class MulGRUFusePass : public FusePassBase {
public:
virtual ~MulGRUFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"fc_nobias_gru_fuse"};
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -565,6 +565,7 @@ PDNode* patterns::FC(PDPattern* pattern, const std::string& name_scope,
return fc_out;
}
PDNode* patterns::LSTM(PDPattern* pattern, const std::string& name_scope,
PDNode* x) {
x->assert_is_op_input("lstm", "Input");
......@@ -589,6 +590,32 @@ PDNode* patterns::LSTM(PDPattern* pattern, const std::string& name_scope,
lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
return Hidden;
}
PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope,
PDNode* x) {
x->assert_is_op_input("gru", "Input");
auto* gru_op = pattern->NewNode(name_scope, "gru")->assert_is_op("gru");
#define NEW_NODE(arg__, io__) \
auto* arg__ = pattern->NewNode(name_scope, #arg__) \
->assert_is_op_##io__("gru", #arg__);
NEW_NODE(Weight, input);
// TODO(Superjomn): upgrade the fuse framework to support optional.
// H0 and bias are optional
NEW_NODE(Bias, input); // also optional
// NEW_NODE(H0, input);
NEW_NODE(Hidden, output);
// below are intermediate
NEW_NODE(BatchGate, output);
NEW_NODE(BatchResetHiddenPrev, output);
NEW_NODE(BatchHidden, output);
gru_op->LinksFrom({x, Weight, Bias});
gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
return Hidden;
}
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -298,6 +298,8 @@ PDNode* FC(PDPattern* pattern, const std::string& name_scope, PDNode* x,
PDNode* LSTM(PDPattern* pattern, const std::string& name_scope, PDNode* x);
PDNode* GRU(PDPattern* pattern, const std::string& name_scope, PDNode* x);
} // namespace patterns
#define IR_NODE_LINK_TO(a, b) \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册