alloc_continuous_space_op.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

static framework::proto::VarType::Type kDefaultDtype =
    framework::proto::VarType::Type::VarType_Type_BOOL;

template <typename DeviceContext, typename T>
class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &in_var_names = context.Inputs("Input");
    auto &out_var_names = context.Outputs("Output");
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size());

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      // Only support LoDTensor
      PADDLE_ENFORCE_NOT_NULL(in_vars[i], "%s should not be nullptr,",
                              in_var_names[i]);
      PADDLE_ENFORCE_NOT_NULL(out_vars[i], "%s should not be nullptr,",
                              out_var_names[i]);
      PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensor>());
      PADDLE_ENFORCE(out_vars[i]->IsType<framework::LoDTensor>());
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
        PADDLE_ENFORCE_EQ(in_var_names[i], out_var_names[i]);
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
    auto dtype = kDefaultDtype;
C
chengduo 已提交
69 70
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, &dtype,
                       context.GetPlace());
71 72 73 74 75 76 77 78

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
79 80
    size_t offset = 0;
    size_t size_of_dtype = framework::SizeOfType(dtype);
81 82
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
83 84 85 86
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
87
                              &sub_tensor);
C
chengduo 已提交
88 89 90

        offset +=
            Alignment(len * size_of_dtype, context.GetPlace()) / size_of_dtype;
91 92 93 94 95 96 97 98 99
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
    }

    // Make the outputs point to the continuous space.
    offset = 0;
100 101
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
102
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
103
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
104 105
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
106 107
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
108
          .Resize(dim);
C
chengduo 已提交
109
      len = Alignment(len * size_of_dtype, context.GetPlace()) / size_of_dtype;
110
      offset += len;
111 112
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
113
    }
114
    VLOG(10) << ss.str();
115 116
  }

C
chengduo 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130
 private:
  // Note(zcd): Addresses should be aligned, otherwise, the results may have
  // diff.
  size_t Alignment(size_t size, const platform::Place &place) const {
    // Allow to allocate the minimum chunk size is 4 KB.
    size_t alignment = 1 << 12;
    if (platform::is_gpu_place(place)) {
      // Allow to allocate the minimum chunk size is 256 B.
      alignment = 1 << 8;
    }
    size_t remaining = size % alignment;
    return remaining == 0 ? size : size + (alignment - remaining);
  }

131 132 133
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
C
chengduo 已提交
134 135
      framework::proto::VarType::Type *dtype,
      const platform::Place &place) const {
136 137
    PADDLE_ENFORCE_EQ(lod_tensors.size(), var_names.size());
    *numel = 0;
C
chengduo 已提交
138
    size_t size_of_dtype = 0;
139 140 141

    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
142 143 144 145 146 147 148 149 150
    for (size_t i = 0; i < var_names.size(); ++i) {
      PADDLE_ENFORCE(lod_tensors[i]->IsInitialized(), "%s is not initialized.",
                     var_names[i]);

      auto p_dtype = lod_tensors[i]->type();
      if (*dtype == kDefaultDtype) {
        PADDLE_ENFORCE_NE(p_dtype, kDefaultDtype, "%s's type should not be %s.",
                          var_names[i], kDefaultDtype);
        *dtype = p_dtype;
C
chengduo 已提交
151
        size_of_dtype = framework::SizeOfType(p_dtype);
152 153 154 155 156
      }
      PADDLE_ENFORCE_EQ(p_dtype, *dtype, "Input vars is not equal.");

      auto size = lod_tensors[i]->numel();
      PADDLE_ENFORCE_GT(size, 0);
157 158
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
         << "), ";
C
chengduo 已提交
159 160
      *numel += Alignment(static_cast<size_t>(size) * size_of_dtype, place) /
                size_of_dtype;
161
    }
162 163

    VLOG(10) << ss.str();
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  }
};

class AllocContinuousSpaceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
};

class AllocContinuousSpaceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
             " alloc_continuous_space operator.")
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
              "tensors of alloc_continuous_space operator. And the address "
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
              "of alloc_continuous_space operator. And the tensors of"
              " Output is sliced from the tensor of FusedOutput.");
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
    AddComment(R"DOC(
AllocContinuousSpace Operator.

alloc_continuous_space is used to make the address of Output
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
alloc_continuous_space allows copying the value of Input to Output, or
setting the Output with a constant value.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(alloc_continuous_space,
                  paddle::operators::AllocContinuousSpaceOp,
                  paddle::operators::AllocContinuousSpaceOpMaker);
namespace ops = paddle::operators;
REGISTER_OP_CPU_KERNEL(
    alloc_continuous_space,
    ops::AllocContinuousSpaceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::AllocContinuousSpaceKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AllocContinuousSpaceKernel<paddle::platform::CPUDeviceContext,
                                    double>);

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
    alloc_continuous_space,
    ops::AllocContinuousSpaceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::AllocContinuousSpaceKernel<paddle::platform::CUDADeviceContext, float>,
    ops::AllocContinuousSpaceKernel<paddle::platform::CUDADeviceContext,
                                    double>);
#endif