Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fbbdc9cc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fbbdc9cc
编写于
6月 06, 2019
作者:
G
gongweibao
提交者:
GitHub
6月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add backward and optimizer operator dependency pass. (#17746)
上级
4cb7d32c
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
342 addition
and
88 deletion
+342
-88
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/all_reduce_op_handle.cc
paddle/fluid/framework/details/all_reduce_op_handle.cc
+1
-0
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+28
-17
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+2
-0
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
+2
-0
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+1
-1
paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.cc
...luid/framework/ir/alloc_continuous_space_for_grad_pass.cc
+36
-63
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+2
-0
paddle/fluid/framework/ir/multi_devices_graph_pass/CMakeLists.txt
...luid/framework/ir/multi_devices_graph_pass/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/multi_devices_graph_pass/backward_optimizer_op_deps_pass.cc
...lti_devices_graph_pass/backward_optimizer_op_deps_pass.cc
+223
-0
paddle/fluid/operators/alloc_continuous_space_op.cc
paddle/fluid/operators/alloc_continuous_space_op.cc
+13
-5
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+10
-0
python/paddle/fluid/tests/unittests/test_dist_mnist_nccl.py
python/paddle/fluid/tests/unittests/test_dist_mnist_nccl.py
+14
-0
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
fbbdc9cc
...
...
@@ -93,6 +93,6 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
fuse_elewise_add_act_pass multi_batch_merge_pass
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass
alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass
alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass
backward_optimizer_op_deps_pass
fuse_adam_op_pass fuse_sgd_op_pass fuse_momentum_op_pass
record_skip_memory_opt_vars_pass
)
paddle/fluid/framework/details/all_reduce_op_handle.cc
浏览文件 @
fbbdc9cc
...
...
@@ -134,6 +134,7 @@ void AllReduceOpHandle::RunImpl() {
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
);
});
}
VLOG
(
10
)
<<
"allreduce size:"
<<
numel
*
SizeOfType
(
lod_tensors
[
0
]
->
type
());
RunAllReduceFuncs
(
all_reduce_calls
);
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
fbbdc9cc
...
...
@@ -49,6 +49,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
:
ir
::
PassBuilder
(),
strategy_
(
strategy
)
{
// Add a graph viz pass to record a graph.
if
(
!
strategy_
.
debug_graphviz_path_
.
empty
())
{
VLOG
(
1
)
<<
"Add graph_viz_pass"
;
auto
viz_pass
=
AppendPass
(
"graph_viz_pass"
);
const
std
::
string
graph_path
=
string
::
Sprintf
(
"%s%s"
,
strategy_
.
debug_graphviz_path_
.
c_str
(),
"_original_graph"
);
...
...
@@ -56,11 +57,12 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
}
// Note(zcd): record_skip_memory_opt_vars_pass should be the first pass.
VLOG
(
1
)
<<
"Add record_skip_memory_opt_vars_pass"
;
AppendPass
(
"record_skip_memory_opt_vars_pass"
);
#ifdef PADDLE_WITH_MKLDNN
if
(
FLAGS_use_mkldnn
)
{
VLOG
(
5
)
<<
"Add mkldnn_placement_pass"
;
VLOG
(
1
)
<<
"Add mkldnn_placement_pass"
;
AppendPass
(
"mkldnn_placement_pass"
);
}
else
if
(
!
strategy_
.
mkldnn_enabled_op_types_
.
empty
())
{
LOG
(
WARNING
)
...
...
@@ -75,7 +77,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
"Please compile with MKLDNN first to use MKLDNN"
);
#endif
if
(
strategy_
.
enable_sequential_execution_
)
{
VLOG
(
5
)
<<
"Add sequential_execution_pass"
;
VLOG
(
1
)
<<
"Add sequential_execution_pass"
;
AppendPass
(
"sequential_execution_pass"
);
}
...
...
@@ -86,7 +88,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add op fusion.
if
(
strategy
.
fuse_relu_depthwise_conv_
)
{
VLOG
(
5
)
<<
"Add fuse_relu_depthwise_conv_pass"
;
VLOG
(
1
)
<<
"Add fuse_relu_depthwise_conv_pass"
;
AppendPass
(
"fuse_relu_depthwise_conv_pass"
);
}
...
...
@@ -98,19 +100,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add automatically inplace.
if
(
strategy_
.
enable_inplace_
)
{
VLOG
(
5
)
<<
"Add inplace_pass"
;
VLOG
(
1
)
<<
"Add inplace_pass"
;
AppendPass
(
"inplace_pass"
);
}
if
(
strategy_
.
fuse_elewise_add_act_ops_
)
{
VLOG
(
5
)
<<
"Add fuse_elewise_add_act_pass"
;
VLOG
(
1
)
<<
"Add fuse_elewise_add_act_pass"
;
AppendPass
(
"fuse_elewise_add_act_pass"
);
}
// for single card training, fuse_all_reduce_ops is unnecessary.
// alloc_continuous_space_for_grad_pass should be before of MultiDevPass.
if
(
strategy_
.
fuse_all_reduce_ops_
)
{
VLOG
(
5
)
<<
"Add alloc_continuous_space_for_grad_pass"
;
VLOG
(
1
)
<<
"Add alloc_continuous_space_for_grad_pass"
;
AppendPass
(
"alloc_continuous_space_for_grad_pass"
);
}
...
...
@@ -125,11 +127,11 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// NOTE: fuse_all_xx_ops will count the number of xx operator first,
// if the number is zero, fuse_all_reduce_ops will do nothing.
// Currently, only one type of optimization algorithm can be fused.
VLOG
(
5
)
<<
"Add fuse_adam_op_pass"
;
VLOG
(
1
)
<<
"Add fuse_adam_op_pass"
;
AppendPass
(
"fuse_adam_op_pass"
);
VLOG
(
5
)
<<
"Add fuse_sgd_op_pass"
;
VLOG
(
1
)
<<
"Add fuse_sgd_op_pass"
;
AppendPass
(
"fuse_sgd_op_pass"
);
VLOG
(
5
)
<<
"Add fuse_momentum_op_pass"
;
VLOG
(
1
)
<<
"Add fuse_momentum_op_pass"
;
AppendPass
(
"fuse_momentum_op_pass"
);
}
}
...
...
@@ -159,7 +161,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface.
if
(
strategy_
.
memory_optimize_
)
{
VLOG
(
5
)
<<
"Add memory_optimize_pass"
;
VLOG
(
1
)
<<
"Add memory_optimize_pass"
;
AppendPass
(
"memory_optimize_pass"
);
}
...
...
@@ -167,7 +169,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// all original and fused operators. But no operators can be enabled this
// attr if putting it after MultiDevPass.
if
(
strategy_
.
cache_runtime_context_
)
{
VLOG
(
5
)
<<
"Add runtime_context_cache_pass"
;
VLOG
(
1
)
<<
"Add runtime_context_cache_pass"
;
AppendPass
(
"runtime_context_cache_pass"
);
}
...
...
@@ -176,12 +178,13 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
if
(
strategy_
.
fuse_all_reduce_ops_
)
{
// NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
// first, if the number is zero, fuse_all_reduce_ops will do nothing.
VLOG
(
5
)
<<
"Add fuse_all_reduce_op_pass"
;
VLOG
(
1
)
<<
"Add fuse_all_reduce_op_pass"
;
AppendPass
(
"fuse_all_reduce_op_pass"
);
}
// Add a graph print pass to record a graph with device info.
if
(
!
strategy_
.
debug_graphviz_path_
.
empty
())
{
VLOG
(
1
)
<<
"Add multi_devices_print_pass"
;
auto
multi_devices_print_pass
=
AppendPass
(
"multi_devices_print_pass"
);
const
std
::
string
graph_path
=
string
::
Sprintf
(
"%s%s"
,
strategy_
.
debug_graphviz_path_
.
c_str
(),
...
...
@@ -197,16 +200,22 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
if
(
!
strategy_
.
enable_parallel_graph_
&&
(
SeqOnlyAllReduceOps
(
strategy_
)
||
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
))
{
VLOG
(
5
)
<<
"Add all_reduce_deps_pass"
;
VLOG
(
1
)
<<
"Add all_reduce_deps_pass"
;
AppendPass
(
"all_reduce_deps_pass"
);
}
if
(
strategy_
.
enable_backward_optimizer_op_deps_
)
{
VLOG
(
1
)
<<
"Add backward_op_deps_pass"
;
AppendPass
(
"backward_optimizer_op_deps_pass"
);
}
if
(
strategy_
.
remove_unnecessary_lock_
)
{
VLOG
(
5
)
<<
"Add modify_op_lock_and_record_event_pass"
;
VLOG
(
1
)
<<
"Add modify_op_lock_and_record_event_pass"
;
AppendPass
(
"modify_op_lock_and_record_event_pass"
);
}
// Verify that the graph is correct for multi-device executor.
VLOG
(
1
)
<<
"Add multi_devices_check_pass"
;
AppendPass
(
"multi_devices_check_pass"
);
}
...
...
@@ -215,18 +224,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
ir
::
Pass
*
multi_devices_pass
=
nullptr
;
if
(
strategy_
.
async_mode_
)
{
VLOG
(
1
)
<<
"Add async_multi_devices_pass"
;
multi_devices_pass
=
AppendPass
(
"async_multi_devices_pass"
).
get
();
}
else
if
(
strategy_
.
is_distribution_
)
{
VLOG
(
5
)
VLOG
(
1
)
<<
"Add dist_multi_devices_pass, multi device parameter server mode"
;
multi_devices_pass
=
AppendPass
(
"dist_multi_devices_pass"
).
get
();
}
else
{
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
VLOG
(
5
)
<<
"Add all_reduce_mode_multi_devices_pass"
;
VLOG
(
1
)
<<
"Add all_reduce_mode_multi_devices_pass"
;
multi_devices_pass
=
AppendPass
(
"all_reduce_mode_multi_devices_pass"
).
get
();
}
else
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
VLOG
(
5
)
<<
"Add reduce_mode_multi_devices_pass"
;
VLOG
(
1
)
<<
"Add reduce_mode_multi_devices_pass"
;
multi_devices_pass
=
AppendPass
(
"reduce_mode_multi_devices_pass"
).
get
();
}
else
{
PADDLE_THROW
(
"Unknown reduce strategy."
);
...
...
@@ -365,6 +375,7 @@ USE_PASS(multi_devices_print_pass);
USE_PASS
(
memory_optimize_pass
);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
backward_optimizer_op_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
USE_PASS
(
inplace_pass
);
USE_PASS
(
lock_free_optimize_pass
);
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
fbbdc9cc
...
...
@@ -80,6 +80,8 @@ struct BuildStrategy {
bool
fuse_all_reduce_ops_
{
false
};
bool
enable_backward_optimizer_op_deps_
{
false
};
bool
fuse_relu_depthwise_conv_
{
false
};
bool
sync_batch_norm_
{
false
};
...
...
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
浏览文件 @
fbbdc9cc
...
...
@@ -166,6 +166,8 @@ void FusedAllReduceOpHandle::RunImpl() {
});
}
VLOG
(
10
)
<<
"fusedallreduce size:"
<<
numel
*
SizeOfType
(
dtype
);
this
->
RunAndRecordEvent
([
&
]
{
if
(
all_reduce_calls
.
size
()
==
1UL
)
{
// Do not use NCCLGroup when manage NCCL by per thread per device
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
fbbdc9cc
...
...
@@ -20,7 +20,7 @@ namespace framework {
namespace
details
{
std
::
string
OpHandleBase
::
DebugString
()
const
{
std
::
stringstream
ss
;
ss
<<
"("
;
ss
<<
Name
()
<<
"("
;
for
(
auto
*
var
:
inputs_
)
{
ss
<<
var
->
DebugString
()
<<
", "
;
}
...
...
paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.cc
浏览文件 @
fbbdc9cc
...
...
@@ -23,15 +23,16 @@
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
DEFINE_uint64
(
fuse_parameter_memory_size
,
0
,
//
0 KB
DEFINE_uint64
(
fuse_parameter_memory_size
,
0
,
//
Bytes
"fuse_parameter_memory_size is up limited memory size "
"of one group parameters' gradient which is the input "
"of communication calling(e.g NCCLAllReduce). "
"The default value is 0, it means that "
"not set group according to memory_size."
);
DEFINE_int32
(
fuse_parameter_groups_size
,
3
,
"fuse_parameter_groups_size is the size of one group parameters' gradient. "
fuse_parameter_groups_size
,
1
,
"fuse_parameter_groups_size is the up limited size of one group "
"parameters' gradient. "
"The default value is a experimental result. If the "
"fuse_parameter_groups_size is 1, it means that the groups size is "
"the number of parameters' gradient. If the fuse_parameter_groups_size is "
...
...
@@ -58,7 +59,6 @@ uint64_t GetFuseParameterMemorySize() {
return
FLAGS_fuse_parameter_memory_size
;
}
static
const
char
kUnKnow
[]
=
"@UNKNOW@"
;
static
framework
::
proto
::
VarType
::
Type
kDefaultDtype
=
framework
::
proto
::
VarType
::
Type
::
VarType_Type_BOOL
;
...
...
@@ -83,7 +83,7 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
}
if
(
params_grads
.
size
()
==
0
)
{
VLOG
(
10
)
<<
"Doesn't find gradients"
;
LOG
(
WARNING
)
<<
"Doesn't find gradients"
;
return
;
}
...
...
@@ -169,7 +169,6 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
details
::
GroupGradsAndParams
*
group_grads_params
)
const
{
SetGroupAccordingToLayers
(
var_nodes
,
params_grads
,
group_grads_params
);
SetGroupAccordingToMemorySize
(
var_nodes
,
group_grads_params
);
SetGroupAccordingToGroupSize
(
var_nodes
,
group_grads_params
);
}
void
SetGroupAccordingToLayers
(
...
...
@@ -181,7 +180,7 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
for
(
size_t
i
=
0
;
i
<
params_grads
.
size
();
++
i
)
{
auto
pos
=
params_grads
[
i
].
first
.
find_first_of
(
"."
);
if
(
pos
==
std
::
string
::
npos
)
{
layer_params
[
std
::
string
(
kUnKnow
)
].
emplace_back
(
i
);
layer_params
[
params_grads
[
i
].
first
].
emplace_back
(
i
);
}
else
{
layer_params
[
params_grads
[
i
].
first
.
substr
(
0
,
pos
)].
emplace_back
(
i
);
}
...
...
@@ -190,7 +189,7 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
group_grads_params
->
reserve
(
layer_params
.
size
());
for
(
size_t
i
=
0
;
i
<
params_grads
.
size
();
++
i
)
{
auto
pos
=
params_grads
[
i
].
first
.
find_first_of
(
"."
);
std
::
string
key
=
kUnKnow
;
std
::
string
key
=
params_grads
[
i
].
first
;
if
(
pos
!=
std
::
string
::
npos
)
{
key
=
params_grads
[
i
].
first
.
substr
(
0
,
pos
);
}
...
...
@@ -207,13 +206,31 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
}
VLOG
(
10
)
<<
"SetGroupAccordingToLayers: "
;
if
(
VLOG_IS_ON
(
10
))
{
PrintGroupInfo
(
var_nodes
,
group_grads_params
);
}
}
void
PrintGroupInfo
(
const
std
::
unordered_map
<
std
::
string
,
ir
::
Node
*>
&
var_nodes
,
details
::
GroupGradsAndParams
*
group_grads_params
)
const
{
for
(
size_t
i
=
0
;
i
<
group_grads_params
->
size
();
++
i
)
{
VLOG
(
10
)
<<
"group "
<<
i
;
std
::
stringstream
out
;
for
(
auto
&
p_g
:
group_grads_params
->
at
(
i
))
{
out
<<
"("
<<
p_g
.
second
<<
", "
<<
p_g
.
first
<<
"), "
;
size_t
gps_size
=
0
;
for
(
auto
&
g_p
:
group_grads_params
->
at
(
i
))
{
auto
iter
=
var_nodes
.
find
(
g_p
.
second
);
PADDLE_ENFORCE
(
iter
!=
var_nodes
.
end
(),
"%s is not found."
,
g_p
.
second
);
auto
shape
=
iter
->
second
->
Var
()
->
GetShape
();
size_t
size
=
framework
::
SizeOfType
(
iter
->
second
->
Var
()
->
GetDataType
());
std
::
for_each
(
shape
.
begin
(),
shape
.
end
(),
[
&
size
](
const
int64_t
&
n
)
{
size
*=
n
;
});
gps_size
+=
size
;
out
<<
string
::
Sprintf
(
"(%s(%d), %s)"
,
g_p
.
second
,
size
,
g_p
.
first
);
}
VLOG
(
10
)
<<
out
.
str
();
VLOG
(
10
)
<<
out
.
str
()
<<
", group size:"
<<
group_grads_params
->
at
(
i
).
size
()
<<
", group memory size:"
<<
gps_size
;
}
}
...
...
@@ -248,6 +265,12 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
group_p_g
.
insert
(
group_p_g
.
end
(),
group_grads_params
->
at
(
j
).
begin
(),
group_grads_params
->
at
(
j
).
end
());
++
j
;
if
(
GetFuseParameterGroupsSize
()
>
1
&&
group_p_g
.
size
()
>
static_cast
<
size_t
>
(
GetFuseParameterGroupsSize
()))
{
break
;
}
if
(
local_group_memory_size
>=
group_memory_size
)
{
break
;
}
...
...
@@ -258,59 +281,9 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
VLOG
(
10
)
<<
string
::
Sprintf
(
"SetGroupAccordingToMemorySize(memory_size: %d):"
,
group_memory_size
);
for
(
size_t
i
=
0
;
i
<
group_grads_params
->
size
();
++
i
)
{
VLOG
(
10
)
<<
"group "
<<
i
;
std
::
stringstream
out
;
for
(
auto
&
g_p
:
group_grads_params
->
at
(
i
))
{
auto
iter
=
var_nodes
.
find
(
g_p
.
second
);
PADDLE_ENFORCE
(
iter
!=
var_nodes
.
end
(),
"%s is not found."
,
g_p
.
second
);
auto
shape
=
iter
->
second
->
Var
()
->
GetShape
();
size_t
size
=
framework
::
SizeOfType
(
iter
->
second
->
Var
()
->
GetDataType
());
std
::
for_each
(
shape
.
begin
(),
shape
.
end
(),
[
&
size
](
const
int64_t
&
n
)
{
size
*=
n
;
});
out
<<
string
::
Sprintf
(
"(%s(%d), %s)"
,
g_p
.
second
,
size
,
g_p
.
first
);
}
VLOG
(
10
)
<<
out
.
str
();
}
}
void
SetGroupAccordingToGroupSize
(
const
std
::
unordered_map
<
std
::
string
,
ir
::
Node
*>
&
var_nodes
,
details
::
GroupGradsAndParams
*
group_grads_params
)
const
{
if
(
GetFuseParameterGroupsSize
()
==
1
)
{
return
;
}
const
int
group_size
=
GetFuseParameterGroupsSize
()
==
-
1
?
static_cast
<
int
>
(
group_grads_params
->
size
())
:
GetFuseParameterGroupsSize
();
PADDLE_ENFORCE_GT
(
group_size
,
1
);
size_t
groups
=
(
group_grads_params
->
size
()
+
group_size
-
1
)
/
group_size
;
details
::
GroupGradsAndParams
local_group_grads_params
;
local_group_grads_params
.
reserve
(
groups
);
size_t
j
=
0
;
for
(
size_t
i
=
0
;
i
<
groups
;
++
i
)
{
local_group_grads_params
.
emplace_back
();
auto
&
group_p_g
=
local_group_grads_params
.
back
();
group_p_g
.
reserve
(
group_size
);
while
(
j
<
group_grads_params
->
size
())
{
group_p_g
.
insert
(
group_p_g
.
end
(),
group_grads_params
->
at
(
j
).
begin
(),
group_grads_params
->
at
(
j
).
end
());
++
j
;
if
(
j
%
group_size
==
0
)
break
;
}
}
std
::
swap
(
*
group_grads_params
,
local_group_grads_params
);
VLOG
(
10
)
<<
string
::
Sprintf
(
"SetGroupAccordingToGroupSize(group_size: %d):"
,
group_size
);
for
(
size_t
i
=
0
;
i
<
group_grads_params
->
size
();
++
i
)
{
VLOG
(
10
)
<<
"group "
<<
i
;
std
::
stringstream
out
;
for
(
auto
&
p_g
:
group_grads_params
->
at
(
i
))
{
out
<<
"("
<<
p_g
.
second
<<
", "
<<
p_g
.
first
<<
"), "
;
}
VLOG
(
10
)
<<
out
.
str
();
if
(
VLOG_IS_ON
(
10
))
{
PrintGroupInfo
(
var_nodes
,
group_grads_params
);
}
}
...
...
paddle/fluid/framework/ir/graph.cc
浏览文件 @
fbbdc9cc
...
...
@@ -134,6 +134,7 @@ void Graph::ResolveHazard(
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
write_op
->
inputs
.
push_back
(
dep_var
);
upstream_op
->
outputs
.
push_back
(
dep_var
);
VLOG
(
10
)
<<
"add dep_var:"
<<
dep_var
->
Name
();
dep_var
->
outputs
.
push_back
(
write_op
);
dep_var
->
inputs
.
push_back
(
upstream_op
);
}
...
...
@@ -157,6 +158,7 @@ void Graph::ResolveHazard(
if
(
has_dep
)
continue
;
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
VLOG
(
10
)
<<
"add dep_var:"
<<
dep_var
->
Name
();
read_op
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
read_op
);
write_op
->
inputs
.
push_back
(
dep_var
);
...
...
paddle/fluid/framework/ir/multi_devices_graph_pass/CMakeLists.txt
浏览文件 @
fbbdc9cc
...
...
@@ -14,3 +14,4 @@ cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS grap
cc_library
(
fuse_all_reduce_op_pass SRCS fuse_all_reduce_op_pass.cc DEPS graph graph_helper fused_all_reduce_op_handle
)
cc_library
(
all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS all_reduce_op_handle graph graph_helper pass
)
cc_library
(
backward_optimizer_op_deps_pass SRCS backward_optimizer_op_deps_pass.cc DEPS graph graph_helper pass
)
paddle/fluid/framework/ir/multi_devices_graph_pass/backward_optimizer_op_deps_pass.cc
0 → 100644
浏览文件 @
fbbdc9cc
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
BackWardOpDepsPass
:
public
ir
::
Pass
{
protected:
void
AddDep
(
ir
::
Graph
*
graph
,
details
::
OpHandleBase
*
l
,
details
::
OpHandleBase
*
r
)
const
{
auto
*
dep_var
=
new
details
::
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
details
::
GraphDepVars
>
(
details
::
kGraphDepVars
).
emplace
(
dep_var
);
l
->
AddOutput
(
dep_var
);
r
->
AddInput
(
dep_var
);
VLOG
(
10
)
<<
"add deps:"
<<
l
->
DebugString
()
<<
" and "
<<
r
->
DebugString
();
}
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
{
// NOTE: The operator nodes should be in topology order.
std
::
vector
<
details
::
OpHandleBase
*>
backward_op_handles
;
std
::
vector
<
details
::
OpHandleBase
*>
all_opt_handles
;
details
::
ParamsAndGrads
params_grads
;
std
::
vector
<
ir
::
Node
*>
topo_nodes
=
ir
::
TopologySortOperations
(
*
graph
);
for
(
auto
&
node
:
topo_nodes
)
{
if
(
!
node
->
Op
())
continue
;
GetBackWardOpHandles
(
node
,
&
backward_op_handles
,
&
params_grads
);
GetOptimizerOpHandles
(
node
,
&
all_opt_handles
);
}
VLOG
(
10
)
<<
"backward_op_handles size:"
<<
backward_op_handles
.
size
()
<<
", opt_handles size:"
<<
all_opt_handles
.
size
();
if
(
backward_op_handles
.
size
()
<=
1
||
all_opt_handles
.
size
()
<=
1
)
{
VLOG
(
10
)
<<
"need not backward_op_deps_pass"
;
return
;
}
std
::
vector
<
details
::
OpHandleBase
*>
opt_handles
;
GetOptimizerHandlesRoot
(
all_opt_handles
,
&
opt_handles
,
params_grads
);
if
(
opt_handles
.
size
()
<=
1
)
{
VLOG
(
10
)
<<
"need not backward_op_deps_pass"
;
return
;
}
VLOG
(
10
)
<<
"add optimize deps"
;
for
(
size_t
i
=
1
;
i
<
opt_handles
.
size
();
++
i
)
{
AddDep
(
graph
,
opt_handles
[
i
-
1
],
opt_handles
[
i
]);
}
VLOG
(
10
)
<<
"add deps between backward and optimze:"
;
AddDep
(
graph
,
backward_op_handles
[
backward_op_handles
.
size
()
-
1
],
opt_handles
[
0
]);
}
/*
* When the backward ophandles complete, the optimizer ophandle's inputs var
* are ready.Since the optimizer ophandles can be seen as graphs which each of
* them doesn't connect to each other, they can run parallelly or by a
* specified order, such as by the grads generated order. This function will
* get these graphs' root.
*/
void
GetOptimizerHandlesRoot
(
const
std
::
vector
<
details
::
OpHandleBase
*>&
ops
,
std
::
vector
<
details
::
OpHandleBase
*>*
result
,
const
details
::
ParamsAndGrads
&
params_grads
)
const
{
std
::
unordered_set
<
details
::
OpHandleBase
*>
visit
;
for
(
auto
op
:
ops
)
{
if
(
visit
.
find
(
op
)
!=
visit
.
end
())
{
continue
;
}
VLOG
(
10
)
<<
"visiting all_opt_handles:"
<<
op
->
DebugString
();
result
->
emplace_back
(
op
);
visit
.
insert
(
op
);
VisitChildrens
(
op
,
&
visit
);
}
for
(
size_t
i
=
0
;
i
<
result
->
size
();
i
++
)
{
VLOG
(
10
)
<<
"get potential head op:"
<<
(
*
result
)[
i
]
->
DebugString
();
}
// sort by param_grad order
std
::
unordered_map
<
std
::
string
,
int
>
pg_order
;
int
order
=
0
;
for
(
auto
&
p_g
:
params_grads
)
{
pg_order
[
p_g
.
second
]
=
order
++
;
}
std
::
vector
<
std
::
pair
<
details
::
OpHandleBase
*
,
int
>>
op_handles
;
for
(
auto
op
:
*
result
)
{
int
order
=
0
;
for
(
auto
input
:
op
->
Inputs
())
{
if
(
dynamic_cast
<
details
::
VarHandle
*>
(
input
)
==
nullptr
)
continue
;
if
(
pg_order
.
find
(
input
->
Name
())
==
pg_order
.
end
())
{
VLOG
(
10
)
<<
"not find input "
<<
input
->
Name
()
<<
" in grad"
;
continue
;
}
if
(
order
<
pg_order
.
at
(
input
->
Name
()))
{
order
=
pg_order
.
at
(
input
->
Name
());
}
}
op_handles
.
emplace_back
(
std
::
make_pair
(
op
,
order
));
}
sort
(
op_handles
.
begin
(),
op_handles
.
end
(),
[](
const
std
::
pair
<
details
::
OpHandleBase
*
,
int
>&
left
,
const
std
::
pair
<
details
::
OpHandleBase
*
,
int
>&
right
)
->
bool
{
return
left
.
second
<
right
.
second
;
});
result
->
clear
();
for
(
auto
p
:
op_handles
)
{
result
->
emplace_back
(
p
.
first
);
}
for
(
size_t
i
=
0
;
i
<
result
->
size
();
i
++
)
{
VLOG
(
10
)
<<
"get head op:"
<<
(
*
result
)[
i
]
->
DebugString
();
}
}
void
VisitChildrens
(
details
::
OpHandleBase
*
op
,
std
::
unordered_set
<
details
::
OpHandleBase
*>*
visit
)
const
{
for
(
auto
out
:
op
->
Outputs
())
{
for
(
auto
*
pending_op
:
out
->
PendingOps
())
{
if
(
visit
->
find
(
pending_op
)
!=
visit
->
end
())
{
continue
;
}
VLOG
(
10
)
<<
"visiting:"
<<
pending_op
->
DebugString
();
visit
->
insert
(
pending_op
);
VisitChildrens
(
pending_op
,
visit
);
}
}
}
void
GetBackWardOpHandles
(
ir
::
Node
*
node
,
std
::
vector
<
details
::
OpHandleBase
*>*
backward_op_handles
,
details
::
ParamsAndGrads
*
params_grads
)
const
{
try
{
bool
is_bk_op
=
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
&
static_cast
<
int
>
(
OpRole
::
kBackward
));
if
(
!
is_bk_op
)
return
;
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
auto
backward_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
node
->
Op
()
->
GetNullableAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
PADDLE_ENFORCE_EQ
(
backward_vars
.
size
()
%
2
,
static_cast
<
size_t
>
(
0
));
PADDLE_ENFORCE
(
node
->
IsWrappedBy
<
details
::
OpHandleBase
>
());
backward_op_handles
->
emplace_back
(
&
node
->
Wrapper
<
details
::
OpHandleBase
>
());
for
(
size_t
i
=
0
;
i
<
backward_vars
.
size
();
i
+=
2
)
{
VLOG
(
10
)
<<
"Trainable parameter: "
<<
backward_vars
[
i
]
<<
", gradient: "
<<
backward_vars
[
i
+
1
];
params_grads
->
emplace_back
(
std
::
make_pair
(
backward_vars
[
i
]
/*param*/
,
backward_vars
[
i
+
1
]
/*grad*/
));
}
}
catch
(
boost
::
bad_get
e
)
{
}
}
void
GetOptimizerOpHandles
(
ir
::
Node
*
node
,
std
::
vector
<
details
::
OpHandleBase
*>*
opt_handles
)
const
{
try
{
bool
is_opt_op
=
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
&
static_cast
<
int
>
(
OpRole
::
kOptimize
));
if
(
!
is_opt_op
)
return
;
opt_handles
->
emplace_back
(
&
node
->
Wrapper
<
details
::
OpHandleBase
>
());
}
catch
(
boost
::
bad_get
e
)
{
}
}
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
backward_optimizer_op_deps_pass
,
paddle
::
framework
::
ir
::
BackWardOpDepsPass
);
paddle/fluid/operators/alloc_continuous_space_op.cc
浏览文件 @
fbbdc9cc
...
...
@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
...
...
@@ -96,6 +97,8 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
// Make the outputs point to the continuous space.
offset
=
0
;
std
::
stringstream
ss
;
ss
<<
"alloc_space_for_vars: "
;
for
(
size_t
i
=
0
;
i
<
out_tensors
.
size
();
++
i
)
{
size_t
len
=
static_cast
<
size_t
>
(
out_tensors
[
i
]
->
numel
());
auto
dim
=
out_tensors
[
i
]
->
dims
();
...
...
@@ -105,10 +108,10 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
.
Resize
(
dim
);
len
=
Alignment
(
len
*
size_of_dtype
,
context
.
GetPlace
())
/
size_of_dtype
;
offset
+=
len
;
VLOG
(
10
)
<<
"alloc_space_for_vars: output("
<<
out_var_names
[
i
]
<<
") ,dim:("
<<
dim
<<
")"
<<
" Address: "
<<
out_tensors
[
i
]
->
data
<
void
>
();
ss
<<
"output("
<<
out_var_names
[
i
]
<<
") dim:("
<<
dim
<<
")"
<<
" address: "
<<
out_tensors
[
i
]
->
data
<
void
>
()
<<
", "
;
}
VLOG
(
10
)
<<
ss
.
str
();
}
private:
...
...
@@ -133,6 +136,9 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
lod_tensors
.
size
(),
var_names
.
size
());
*
numel
=
0
;
size_t
size_of_dtype
=
0
;
std
::
stringstream
ss
;
ss
<<
"alloc_space_for_vars: "
;
for
(
size_t
i
=
0
;
i
<
var_names
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
lod_tensors
[
i
]
->
IsInitialized
(),
"%s is not initialized."
,
var_names
[
i
]);
...
...
@@ -148,11 +154,13 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
auto
size
=
lod_tensors
[
i
]
->
numel
();
PADDLE_ENFORCE_GT
(
size
,
0
);
VLOG
(
10
)
<<
"alloc_space_for_vars: input("
<<
var_names
[
i
]
<<
") ,dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
")
"
;
ss
<<
"input("
<<
var_names
[
i
]
<<
") dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
"),
"
;
*
numel
+=
Alignment
(
static_cast
<
size_t
>
(
size
)
*
size_of_dtype
,
place
)
/
size_of_dtype
;
}
VLOG
(
10
)
<<
ss
.
str
();
}
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
fbbdc9cc
...
...
@@ -1509,6 +1509,13 @@ All parameter, weight, gradient are variables in Paddle.
"fuse_all_reduce_ops"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
fuse_all_reduce_ops_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
fuse_all_reduce_ops_
=
b
;
})
.
def_property
(
"enable_backward_optimizer_op_deps"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_backward_optimizer_op_deps_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_backward_optimizer_op_deps_
=
b
;
})
.
def_property
(
"cache_runtime_context"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
cache_runtime_context_
;
},
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
fbbdc9cc
...
...
@@ -180,7 +180,7 @@ if(WITH_DISTRIBUTE)
endif
()
if
(
NOT APPLE
)
set_tests_properties
(
test_dist_mnist PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_dist_mnist_nccl PROPERTIES TIMEOUT 2
0
0
)
set_tests_properties
(
test_dist_mnist_nccl PROPERTIES TIMEOUT 2
5
0
)
set_tests_properties
(
test_dist_mnist_lars PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT 200
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext
)
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
fbbdc9cc
...
...
@@ -140,6 +140,9 @@ class TestDistRunnerBase(object):
build_stra
.
enable_inplace
=
False
build_stra
.
memory_optimize
=
False
if
args
.
enable_backward_deps
:
build_stra
.
enable_backward_optimizer_op_deps
=
True
if
args
.
use_reduce
:
build_stra
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
else
:
...
...
@@ -274,6 +277,8 @@ def runtime_main(test_class):
parser
.
add_argument
(
'--trainer_id'
,
type
=
int
,
required
=
False
,
default
=
0
)
parser
.
add_argument
(
'--trainers'
,
type
=
int
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--nccl_comm_num'
,
type
=
int
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--enable_backward_deps'
,
type
=
bool
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--current_endpoint'
,
type
=
str
,
required
=
False
,
default
=
""
)
parser
.
add_argument
(
'--sync_mode'
,
action
=
'store_true'
)
...
...
@@ -354,6 +359,7 @@ class TestDistBase(unittest.TestCase):
self
.
_nccl_comm_num
=
1
self
.
_setup_config
()
self
.
_after_setup_config
()
self
.
_enable_backward_deps
=
False
def
_find_free_port
(
self
):
def
__free_port
():
...
...
@@ -606,6 +612,10 @@ class TestDistBase(unittest.TestCase):
env0
=
{
"FLAGS_selected_gpus"
:
"0"
}
env1
=
{
"FLAGS_selected_gpus"
:
"1"
}
if
self
.
_enable_backward_deps
:
tr0_cmd
+=
" --enable_backward_deps 1"
tr1_cmd
+=
" --enable_backward_deps 1"
env0
.
update
(
envs
)
env1
.
update
(
envs
)
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist_nccl.py
浏览文件 @
fbbdc9cc
...
...
@@ -58,5 +58,19 @@ class TestDistMnistNCCL2DGC(TestDistBase):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-5
)
class
TestDistMnistNCCL2BackWardDeps
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
self
.
_use_reader_alloc
=
False
self
.
_nccl2_mode
=
True
self
.
_enable_backward_deps
=
True
def
test_dist_train
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录