mnist.py 3.9 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy

BATCH_SIZE = 100

scope = core.Scope()
place = core.CPUPlace()
dev_ctx = core.DeviceContext.create(place)

# init_net = core.Net.create()
forward_network = core.Net.create()

# should be init after forward_op is constructed
# backward_net = core.Operator.backward(forward_net, set())
backward_net = None
optimize_net = core.Net.create()


def atom_id():
    id = 0
    while True:
        yield id
        id += 1


uniq_id = atom_id().next


def data_layer(name, dims):
    var = scope.new_var(name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)  # 1 is batch size holder.
    return name


def feed_data(name, data):
    assert isinstance(data, numpy.array)
    tensor = scope.find_var(name).get_tensor()
    tensor.set_dims(data.shape)
    tensor.alloc_float(place)
    tensor.set(data, place)


def grad_var_name(var_name):
    return var_name + "@GRAD"


def sgd_optimizer(net, param_name, learning_rate=0.01):
    grad_name = grad_var_name(param_name)
    optimize_op = Operator(
        "sgd", param=param_name, grad=grad_name, learning_rate=learning_rate)
    net.add_op(optimize_op)


# should use operator and add these to the init_network
def init_param(param_name, dims):
    print param_name
    var = scope.new_var(param_name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)
    data = numpy.random.uniform(
        low=0.0, high=1.0, size=tensor.shape()).astype("float32")
    tensor.set(data, place)


# fc_layer
def fc_layer(net, input, size, act="sigmoid", bias=True, param=None, name=None):
    """
    Add a fc layer to net

    :param input: input variable name.
    :type input: str
    :param size: fully connected layer size.
    :param act: activation name
    :param param: parameter attribute, used for initialize parameters.
    :param bias: bias attribute. False will not have a bias.
    :param name: the name of fc layer. If not set, model will generate a
    readable name
    :return: output variable name.
    """
    if name is None:
        name = 'fc_%d' % uniq_id()
    if not isinstance(name, str):
        raise ValueError("name should be string")

    input_dims = scope.find_var(input).get_tensor().get_dims()

    w_name = param or name + ".w"
    init_param(param_name=w_name, dims=[input_dims[1], size])
    sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01)

    pre_activation = name + ".mul.out"
    scope.new_var(pre_activation)
    mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation)
    net.add_op(mul_op)

    # create bias variable if needed
    if bias:
        bias_name = name + ".b"
        init_param(param_name=bias_name, dims=[size])
        sgd_optimizer(
            net=optimize_net, param_name=bias_name, learning_rate=0.01)
        bias_out = name + ".rowwise_add.out"
        scope.new_var(bias_out)
        rowwise_add_op = Operator(
            "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out)
        net.add_op(rowwise_add_op)
        pre_activation = bias_out

    activation_op = Operator(act, X=pre_activation, Y=name)
    net.add_op(activation_op)
    scope.new_var(name)
    net.infer_shape(scope)
    return name


def cross_entropy_layer(net, input, label):
    cost_name = 'cross_entropy_%d' % uniq_id()
    cross_entropy_op = Operator(
        "onehot_cross_entropy", X=input, label=label, Y=cost_name)
    net.add_op(cross_entropy_op)
    scope.new_var(cost_name)
    net.infer_shape(scope)
    return cost_name


images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
label = data_layer(name='label', dims=[BATCH_SIZE])
fc = fc_layer(net=forward_network, input=images, size=10, act="softmax")
cost = cross_entropy_layer(net=forward_network, input=fc, label=label)
forward_network.complete_add_op(True)
print(forward_network)
backward_net = core.Operator.backward(forward_network, set())

print(backward_net)

PASS_NUM = 10
for pass_id in range(PASS_NUM):
    print pass_id