Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
46d30ec6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
46d30ec6
编写于
8月 17, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init minst.py
上级
428ce905
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
140 addition
and
0 deletion
+140
-0
python/paddle/v2/framework/tests/mnist.py
python/paddle/v2/framework/tests/mnist.py
+140
-0
未找到文件。
python/paddle/v2/framework/tests/mnist.py
0 → 100644
浏览文件 @
46d30ec6
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
BATCH_SIZE
=
100
scope
=
core
.
Scope
()
place
=
core
.
CPUPlace
()
dev_ctx
=
core
.
DeviceContext
.
create
(
place
)
# init_net = core.Net.create()
forward_network
=
core
.
Net
.
create
()
# should be init after forward_op is constructed
# backward_net = core.Operator.backward(forward_net, set())
backward_net
=
None
optimize_net
=
core
.
Net
.
create
()
def
atom_id
():
id
=
0
while
True
:
yield
id
id
+=
1
uniq_id
=
atom_id
().
next
def
data_layer
(
name
,
dims
):
var
=
scope
.
new_var
(
name
)
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
(
dims
)
# 1 is batch size holder.
return
name
def
feed_data
(
name
,
data
):
assert
isinstance
(
data
,
numpy
.
array
)
tensor
=
scope
.
find_var
(
name
).
get_tensor
()
tensor
.
set_dims
(
data
.
shape
)
tensor
.
alloc_float
(
place
)
tensor
.
set
(
data
,
place
)
def
grad_var_name
(
var_name
):
return
var_name
+
"@GRAD"
def
sgd_optimizer
(
net
,
param_name
,
learning_rate
=
0.01
):
grad_name
=
grad_var_name
(
param_name
)
optimize_op
=
Operator
(
"sgd"
,
param
=
param_name
,
grad
=
grad_name
,
learning_rate
=
learning_rate
)
net
.
add_op
(
optimize_op
)
# should use operator and add these to the init_network
def
init_param
(
param_name
,
dims
):
print
param_name
var
=
scope
.
new_var
(
param_name
)
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
(
dims
)
data
=
numpy
.
random
.
uniform
(
low
=
0.0
,
high
=
1.0
,
size
=
tensor
.
shape
()).
astype
(
"float32"
)
tensor
.
set
(
data
,
place
)
# fc_layer
def
fc_layer
(
net
,
input
,
size
,
act
=
"sigmoid"
,
bias
=
True
,
param
=
None
,
name
=
None
):
"""
Add a fc layer to net
:param input: input variable name.
:type input: str
:param size: fully connected layer size.
:param act: activation name
:param param: parameter attribute, used for initialize parameters.
:param bias: bias attribute. False will not have a bias.
:param name: the name of fc layer. If not set, model will generate a
readable name
:return: output variable name.
"""
if
name
is
None
:
name
=
'fc_%d'
%
uniq_id
()
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name should be string"
)
input_dims
=
scope
.
find_var
(
input
).
get_tensor
().
get_dims
()
w_name
=
param
or
name
+
".w"
init_param
(
param_name
=
w_name
,
dims
=
[
input_dims
[
1
],
size
])
sgd_optimizer
(
net
=
optimize_net
,
param_name
=
w_name
,
learning_rate
=
0.01
)
pre_activation
=
name
+
".mul.out"
scope
.
new_var
(
pre_activation
)
mul_op
=
Operator
(
"mul"
,
X
=
input
,
Y
=
w_name
,
Out
=
pre_activation
)
net
.
add_op
(
mul_op
)
# create bias variable if needed
if
bias
:
bias_name
=
name
+
".b"
init_param
(
param_name
=
bias_name
,
dims
=
[
size
])
sgd_optimizer
(
net
=
optimize_net
,
param_name
=
bias_name
,
learning_rate
=
0.01
)
bias_out
=
name
+
".rowwise_add.out"
scope
.
new_var
(
bias_out
)
rowwise_add_op
=
Operator
(
"rowwise_add"
,
X
=
pre_activation
,
b
=
bias_name
,
Out
=
bias_out
)
net
.
add_op
(
rowwise_add_op
)
pre_activation
=
bias_out
activation_op
=
Operator
(
act
,
X
=
pre_activation
,
Y
=
name
)
net
.
add_op
(
activation_op
)
scope
.
new_var
(
name
)
net
.
infer_shape
(
scope
)
return
name
def
cross_entropy_layer
(
net
,
input
,
label
):
cost_name
=
'cross_entropy_%d'
%
uniq_id
()
cross_entropy_op
=
Operator
(
"onehot_cross_entropy"
,
X
=
input
,
label
=
label
,
Y
=
cost_name
)
net
.
add_op
(
cross_entropy_op
)
scope
.
new_var
(
cost_name
)
net
.
infer_shape
(
scope
)
return
cost_name
images
=
data_layer
(
name
=
'pixel'
,
dims
=
[
BATCH_SIZE
,
784
])
label
=
data_layer
(
name
=
'label'
,
dims
=
[
BATCH_SIZE
])
fc
=
fc_layer
(
net
=
forward_network
,
input
=
images
,
size
=
10
,
act
=
"softmax"
)
cost
=
cross_entropy_layer
(
net
=
forward_network
,
input
=
fc
,
label
=
label
)
forward_network
.
complete_add_op
(
True
)
print
(
forward_network
)
backward_net
=
core
.
Operator
.
backward
(
forward_network
,
set
())
print
(
backward_net
)
PASS_NUM
=
10
for
pass_id
in
range
(
PASS_NUM
):
print
pass_id
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录