gradient_checker.py 11.2 KB
Newer Older
1 2 3
import unittest

import numpy
4
import itertools
Y
Yu Yang 已提交
5
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
6
from paddle.v2.framework.op import Operator
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
__all__ = ['get_numeric_gradient']

Y
Yu Yang 已提交
10

11
def create_op(op_type):
12
    # TODO need to set attrs
13 14 15 16 17 18 19 20 21 22 23 24 25
    kwargs = dict()
    for in_name in Operator.get_op_input_names(op_type):
        kwargs[in_name] = in_name
    for out_name in Operator.get_op_output_names(op_type):
        kwargs[out_name] = out_name

    return Operator(op_type, **kwargs)


def grad_var_name(var_name):
    return var_name + "@GRAD"


26 27 28 29
def empty_var_name():
    return "@EMPTY@"


Y
Yu Yang 已提交
30 31 32 33
def get_numeric_gradient(op,
                         input_values,
                         output_name,
                         input_to_check,
34
                         delta=0.005,
Y
Yu Yang 已提交
35
                         local_scope=None):
Y
Yu Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
    """
    Get Numeric Gradient for an operator's input.
    
    :param op: C++ operator instance, could be an network 
    :param input_values: The input variables. Should be an dictionary, key is 
    variable name. Value is numpy array.
    :param output_name: The final output variable name. 
    :param input_to_check: The input variable need to get gradient.
    :param delta: The perturbation value for numeric gradient method. The 
    smaller delta is, the more accurate result will get. But if that delta is
     too small, it could occur numerical stability problem.
    :param local_scope: The local scope used for get_numeric_gradient.
    :return: The gradient array in numpy format.
    """
Y
Yu Yang 已提交
50 51
    if local_scope is None:
        local_scope = core.Scope()
Y
Yu Yang 已提交
52 53

    # Create all input variable in local_scope
Y
Yu Yang 已提交
54 55 56 57
    for var_name in input_values:
        var = local_scope.new_var(var_name)
        tensor = var.get_tensor()
        tensor.set_dims(input_values[var_name].shape)
Y
Yu Yang 已提交
58 59
        tensor.alloc_float(core.CPUPlace())
        tensor.set(input_values[var_name], core.CPUPlace())
Y
Yu Yang 已提交
60

Y
Yu Yang 已提交
61
    # Create all output variable in local_scope
Y
Yu Yang 已提交
62 63 64 65 66
    opts = op.outputs()
    for key in opts:
        for output in opts[key]:
            if local_scope.find_var(output) is None:
                local_scope.new_var(output).get_tensor()
Y
Yu Yang 已提交
67 68
    op.infer_shape(local_scope)

Y
Yu Yang 已提交
69
    # allocate output memory
Y
Yu Yang 已提交
70 71 72 73
    for key in opts:
        for output in opts[key]:
            local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
            ))
Y
Yu Yang 已提交
74

Y
Yu Yang 已提交
75
    cpu_ctx = core.DeviceContext.create(core.CPUPlace())
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83

    def get_output():
        op.run(local_scope, cpu_ctx)
        return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

Q
qiaolongfei 已提交
84
    # get the input tensor that we want to get it's numeric gradient.
Y
Yu Yang 已提交
85 86
    tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
Q
qiaolongfei 已提交
87
    # prepare a numpy array to store the gradient.
Y
Yu Yang 已提交
88
    gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
Q
qiaolongfei 已提交
89 90 91

    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
Y
Yu Yang 已提交
92
    for i in xrange(tensor_size):
Q
qiaolongfei 已提交
93
        # get one input element throw it's index i.
Y
Yu Yang 已提交
94
        origin = tensor_to_check.get_float_element(i)
Q
qiaolongfei 已提交
95 96

        # add delta to it, run op and then get the sum of the result tensor.
Y
Yu Yang 已提交
97 98 99 100
        x_pos = origin + delta
        tensor_to_check.set_float_element(i, x_pos)
        y_pos = get_output()

Q
qiaolongfei 已提交
101
        # plus delta to this element, run op and get the sum of the result tensor.
Y
Yu Yang 已提交
102 103 104 105
        x_neg = origin - delta
        tensor_to_check.set_float_element(i, x_neg)
        y_neg = get_output()

Q
qiaolongfei 已提交
106 107 108 109
        # restore old value
        tensor_to_check.set_float_element(i, origin)

        # compute the gradient of this element and store it into a numpy array.
Y
Yu Yang 已提交
110
        gradient_flat[i] = (y_pos - y_neg) / delta / 2
Q
qiaolongfei 已提交
111 112

    # reshape the gradient result to the shape of the source tensor.
Y
Yu Yang 已提交
113 114 115
    return gradient_flat.reshape(tensor_to_check.get_dims())


116
class GradientChecker(unittest.TestCase):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def __get_gradient(self, forward_op, backward_op, input_value, grad_names,
                       place):
        """Get the input gradients after running forward and backward operators
        on the given places.

        :param forward_op: forward operator
        :type forward_op: Operator
        :param backward_op: backward operator
        :type backward_op: Operator
        :param input_value: input values.
        :type input_value: dict{string:numpy.array}
        :param grad_names: the names of returned input gradients.
        :type input_value: a list of string
        :param place: the device type.
        :type place: CPUPlace or GPUPlace
        :return: the input grdients of given grad_names.
        :rtype: a list of numpy.array
        """
135 136
        scope = core.Scope()
        ctx = core.DeviceContext.create(place)
137

138 139 140 141 142 143
        inputs = forward_op.inputs()
        in_names = [item for k in inputs for item in inputs[k]]
        outputs = forward_op.outputs()
        out_names = [item for k in outputs for item in outputs[k]]

        # create input var and set value
144
        for name, value in input_value.iteritems():
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            if name not in in_names:
                raise ValueError(name + "does not exist in Op's inputs.")
            var = scope.new_var(name).get_tensor()
            var.set_dims(value.shape)
            var.set(value, place)

        # run forward op
        for out_name in out_names:
            scope.new_var(out_name)
        forward_op.infer_shape(scope)
        forward_op.run(scope, ctx)

        # set output var's shape
        # set output grad to ones
        for name in out_names:
            out_tensor = scope.find_var(name).get_tensor()
            grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
            grad_tensor.set_dims(out_tensor.shape())
            data = numpy.ones(out_tensor.shape(), dtype=numpy.float32)
            grad_tensor.set(data, place)

        # run backward op
        for name in backward_op.outputs():
            scope.new_var(name)
        backward_op.infer_shape(scope)
        backward_op.run(scope, ctx)

        outs = [
            numpy.array(scope.find_var(name).get_tensor())
            for name in grad_names
        ]
        return outs

178
    def compare_grad(self, forward_op, input_value, no_grad_set=None):
179 180 181 182 183 184 185
        """ Compare the input gradients between CPU and GPU for the given forward
        operator.

        :param forward_op: forward operator
        :type forward_op: Operator
        :param input_value: input values.
        :type input_value: dict{string:numpy.array}
186 187
        :param no_grad_set: the set of variables names without gradients.
        :type no_grad_set: a set of string
188 189
        :raises: AssertionError, there is different gradient value.
        """
190 191 192
        if no_grad_set is None:
            no_grad_set = set()
        backward_op = core.Operator.backward(forward_op, no_grad_set)
D
dangqingqing 已提交
193
        # return if not compile with GPU or not implementing GPU kernel
194 195
        if not (core.is_compile_gpu() and backward_op.support_gpu()):
            return
196

197 198
        outputs = backward_op.outputs()
        out_names = [item for k in outputs for item in outputs[k]]
199
        out_names = filter(lambda x: x != empty_var_name(), out_names)
200 201 202 203
        cpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
                                        out_names, core.CPUPlace())
        gpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
                                        out_names, core.GPUPlace(0))
204 205 206 207

        for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads,
                                                   out_names):
            self.assertTrue(
208 209
                numpy.allclose(
                    c_grad, g_grad, atol=1e-4),
210 211
                "output name: " + name + " has diff")

212 213 214 215 216 217 218 219 220 221 222 223 224
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):
        """Use relative error for the comparison.

        :param numeric_grads: the numerical graidents.
        :type numeric_grads: a list of numpy.array 
        :param analytic_grads: the analytical graidents.
        :type analytic_grads: a list of numpy.array 
        :param name: the names of gradients, used to print for debug.
        :type names: a list of string
        :param msg_prefix: string info, used to print for debug.
        :type msf_prefix: string
        """
225
        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
            abs_a = numpy.abs(a)
            # if abs_a is nearly zero, then use abs error for a, not relative
            # error.
            abs_a[abs_a < 1e-3] = 1

            diff_mat = numpy.abs(a - b) / abs_a
            max_diff = numpy.max(diff_mat)

            def err_msg():
                offset = numpy.argmax(diff_mat > max_relative_error)
                return "%s Variable %s max gradient diff %f over limit %f, the first " \
                       "error element is %d" % (
                       msg_prefix, name, max_diff, max_relative_error, offset)

            self.assertLessEqual(max_diff, max_relative_error, err_msg())
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

    def check_grad(self,
                   forward_op,
                   input_vars,
                   inputs_to_check,
                   output_name,
                   no_grad_set=None,
                   only_cpu=False,
                   max_relative_error=0.005):
        """
        :param forward_op: used to create backward_op
        :param input_vars: numpy value of input variable. The following
            computation will use these variables.
        :param inputs_to_check: inputs var names that should check gradient.
        :param output_name: output name that used to
        :param max_relative_error: The relative tolerance parameter.
        :param no_grad_set: used when create backward ops
        :param only_cpu: only compute and check gradient on cpu kernel.
        :return:
        """
        if no_grad_set is None:
            no_grad_set = set()

Y
Yu Yang 已提交
264
        no_tmp_out = forward_op.no_intermediate_outputs()
265 266 267
        if len(no_tmp_out) != 1:
            raise ValueError("non temp out_names should be 1")

Y
Yu Yang 已提交
268 269
        inputs = forward_op.inputs()
        in_names = [item for k in inputs for item in inputs[k]]
270 271 272 273 274 275 276 277 278
        for no_grad in no_grad_set:
            if no_grad not in in_names:
                raise ValueError("no_grad should be in in_names")
        backward_op = core.Operator.backward(forward_op, no_grad_set)

        places = [core.CPUPlace()]
        if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
            places.append(core.GPUPlace(0))

279 280 281 282 283
        # get numerical gradients
        numeric_grads = [
            get_numeric_gradient(forward_op, input_vars, output_name, name)
            for name in inputs_to_check
        ]
284

285
        check_names = [grad_var_name(name) for name in inputs_to_check]
286
        for place in places:
287
            # get analytical gradients according to different device
288 289
            analytic_grads = self.__get_gradient(forward_op, backward_op,
                                                 input_vars, check_names, place)
290 291 292
            self.__assert_is_close(numeric_grads, analytic_grads, check_names,
                                   max_relative_error,
                                   "Gradient Check On %s" % str(place))