pool_compute.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
27 28 29 30
void PoolCompute::PrepareForRun() {
  auto& ctx = this->ctx_->template As<ARMContext>();
}

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
void PoolCompute::Run() {
  auto& param = Param<operators::PoolParam>();
  auto& in_dims = param.x->dims();
  auto& out_dims = param.output->dims();

  const float* din = param.x->data<float>();
  float* dout = param.output->mutable_data<float>();

  std::vector<int>& ksize = param.ksize;
  std::vector<int>& strides = param.strides;
  std::vector<int>& paddings = param.paddings;

  std::string& pooling_type = param.pooling_type;
  bool global_pooling = param.global_pooling;
  bool exclusive = param.exclusive;
  bool adaptive = param.adaptive;
  bool ceil_mode = param.ceil_mode;
  bool use_quantizer = param.use_quantizer;
  std::string& data_format = param.data_format;

  if (param.global_pooling) {
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
      ksize[i] = static_cast<int>(in_dims[i + 2]);
    }
  }

#if 0
  for (int i = 0; i < in_dims.size(); ++i) {
    LOG(INFO) << "in_dims[" << i << "]:" << in_dims[i];
  }
  for (int i = 0; i < out_dims.size(); ++i) {
    LOG(INFO) << "out_dims[" << i << "]:" << out_dims[i];
  }
  for (int i = 0; i < ksize.size(); ++i) {
    LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
  }
  for (int i = 0; i < strides.size(); ++i) {
    LOG(INFO) << "strides[" << i << "]:" << strides[i];
  }
  for (int i = 0; i < paddings.size(); ++i) {
    LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
  }
  LOG(INFO) << "global_pooling:" << global_pooling;
  LOG(INFO) << "exclusive:" << exclusive;
  LOG(INFO) << "adaptive:" << adaptive;
  LOG(INFO) << "ceil_mode:" << ceil_mode;
  LOG(INFO) << "use_quantizer:" << use_quantizer;
  LOG(INFO) << "data_format:" << data_format;
  LOG(INFO) << "din:" << din;
  LOG(INFO) << "dout:" << dout;
#endif

  // global
  if (global_pooling == true) {
    lite::arm::math::pooling_global(
        din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
        in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
        global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
        pooling_type);
  } else if (ksize[0] == 2 && ksize[0] == ksize[1] && strides[0] == 2 &&
             strides[0] == strides[1]) {
    if (pooling_type == "max") {
      lite::arm::math::pooling2x2s2_max(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    } else if (pooling_type == "avg") {
      lite::arm::math::pooling2x2s2_ave(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    }
  } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 1 &&
             strides[0] == strides[1] && paddings[0] == 1) {
    if (pooling_type == "max") {
      lite::arm::math::pooling3x3s1p1_max(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    } else if (pooling_type == "avg") {
      lite::arm::math::pooling3x3s1p1_ave(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    }
  } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 &&
             strides[0] == strides[1] && paddings[0] == 0) {
    if (pooling_type == "max") {
      lite::arm::math::pooling3x3s2p0_max(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    } else if (pooling_type == "avg") {
      lite::arm::math::pooling3x3s2p0_ave(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    }
  } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 &&
             strides[0] == strides[1] && paddings[0] == 1) {
    if (pooling_type == "max") {
      lite::arm::math::pooling3x3s2p1_max(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    } else if (pooling_type == "avg") {
      lite::arm::math::pooling3x3s2p1_ave(
          din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
          in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
          global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
          pooling_type);
    }
  } else {
    lite::arm::math::pooling_basic(
        din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3],
        in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings,
        global_pooling, exclusive, adaptive, ceil_mode, use_quantizer,
        pooling_type);
  }
  return;
}

TargetType PoolCompute::target() const { return TARGET(kARM); }

PrecisionType PoolCompute::precision() const { return PRECISION(kFloat); }

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

170
REGISTER_LITE_KERNEL(pool2d, kARM, kFloat, kNCHW,
171 172 173 174
                     paddle::lite::kernels::arm::PoolCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();