Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
33437fe4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
33437fe4
编写于
6月 14, 2019
作者:
H
hong19860320
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable mobilenetv1, fix the bugs of conv, pool, relu and split
test=develop
上级
5f833603
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
59 addition
and
42 deletion
+59
-42
paddle/fluid/lite/api/cxx_api_bin.cc
paddle/fluid/lite/api/cxx_api_bin.cc
+10
-7
paddle/fluid/lite/core/optimizer.h
paddle/fluid/lite/core/optimizer.h
+12
-12
paddle/fluid/lite/kernels/arm/conv_compute.cc
paddle/fluid/lite/kernels/arm/conv_compute.cc
+2
-2
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
+1
-1
paddle/fluid/lite/kernels/arm/pool_compute.cc
paddle/fluid/lite/kernels/arm/pool_compute.cc
+1
-1
paddle/fluid/lite/kernels/arm/relu_compute.h
paddle/fluid/lite/kernels/arm/relu_compute.h
+2
-0
paddle/fluid/lite/operators/conv_op.h
paddle/fluid/lite/operators/conv_op.h
+17
-12
paddle/fluid/lite/operators/pool_op.h
paddle/fluid/lite/operators/pool_op.h
+12
-4
paddle/fluid/lite/operators/relu_op.cc
paddle/fluid/lite/operators/relu_op.cc
+1
-2
paddle/fluid/lite/operators/split_op.cc
paddle/fluid/lite/operators/split_op.cc
+1
-1
未找到文件。
paddle/fluid/lite/api/cxx_api_bin.cc
浏览文件 @
33437fe4
...
...
@@ -14,9 +14,9 @@
#include "paddle/fluid/lite/api/cxx_api.h"
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
//
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
#include "paddle/fluid/lite/core/mir/passes.h"
#endif
//
#endif
#include "paddle/fluid/lite/core/op_registry.h"
...
...
@@ -24,6 +24,9 @@ namespace paddle {
namespace
lite
{
void
Run
(
const
char
*
model_dir
)
{
#ifdef LITE_WITH_ARM
DeviceInfo
::
Init
();
#endif
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
...
...
@@ -32,9 +35,9 @@ void Run(const char* model_dir) {
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
3
,
224
,
224
})));
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
3
*
224
*
224
;
i
++
)
{
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
()
;
i
++
)
{
data
[
i
]
=
i
;
}
...
...
@@ -65,7 +68,7 @@ USE_LITE_OP(feed);
USE_LITE_OP
(
fetch
);
USE_LITE_OP
(
io_copy
);
USE_LITE_OP
(
con2d
);
USE_LITE_OP
(
con
v
2d
);
// USE_LITE_OP(batch_norm);
USE_LITE_OP
(
relu
);
USE_LITE_OP
(
depthwise_conv2d
);
...
...
@@ -81,10 +84,10 @@ USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
mul
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
scale
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
con2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
con
v
2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
batch_norm
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
relu
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
depthwise_con2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
depthwise_con
v
2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
pool2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
elementwise_add
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
softmax
,
kARM
,
kFloat
,
kNCHW
,
def
);
...
...
paddle/fluid/lite/core/optimizer.h
浏览文件 @
33437fe4
...
...
@@ -46,24 +46,24 @@ class Optimizer {
SpecifyKernelPickTactic
(
kernel_pick_factor
);
InitTargetTypeTransformPass
();
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
//
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
if
(
passes
.
empty
())
{
RunPasses
(
std
::
vector
<
std
::
string
>
{{
"static_kernel_pick_pass"
,
//
"variable_place_inference_pass"
,
//
"argument_type_display_pass"
,
//
"type_target_transform_pass"
,
//
"argument_type_display_pass"
,
//
"variable_place_inference_pass"
,
//
"argument_type_display_pass"
,
//
"io_copy_kernel_pick_pass"
,
//
"variable_place_inference_pass"
,
//
"runtime_context_assign_pass"
,
//
//
"static_kernel_pick_pass", //
//
"variable_place_inference_pass", //
//
"argument_type_display_pass", //
//
"type_target_transform_pass", //
//
"argument_type_display_pass", //
//
"variable_place_inference_pass", //
//
"argument_type_display_pass", //
//
"io_copy_kernel_pick_pass", //
//
"variable_place_inference_pass", //
"runtime_context_assign_pass"
,
//
}});
}
else
{
RunPasses
(
passes
);
}
#endif
//
#endif
exec_scope_
=
program
.
exec_scope
();
}
...
...
paddle/fluid/lite/kernels/arm/conv_compute.cc
浏览文件 @
33437fe4
...
...
@@ -102,7 +102,7 @@ REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out
put
"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
depthwise_conv2d
,
kARM
,
kFloat
,
kNCHW
,
...
...
@@ -110,5 +110,5 @@ REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out
put
"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/arm/elementwise_add_compute.cc
浏览文件 @
33437fe4
...
...
@@ -26,7 +26,7 @@ void ElementwiseAddCompute::Run() {
const
float
*
y_data
=
param
.
Y
->
data
<
float
>
();
float
*
out_data
=
param
.
Out
->
mutable_data
<
float
>
();
int
n
=
param
.
X
->
dims
().
production
();
lite
::
arm
::
math
::
elementwise_add
(
x_data
,
y_data
,
out_data
,
n
);
//
lite::arm::math::elementwise_add(x_data, y_data, out_data, n);
}
}
// namespace arm
...
...
paddle/fluid/lite/kernels/arm/pool_compute.cc
浏览文件 @
33437fe4
...
...
@@ -163,7 +163,7 @@ PrecisionType PoolCompute::precision() const { return PRECISION(kFloat); }
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
pool
,
kARM
,
kFloat
,
kNCHW
,
REGISTER_LITE_KERNEL
(
pool
2d
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
PoolCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
...
...
paddle/fluid/lite/kernels/arm/relu_compute.h
浏览文件 @
33437fe4
...
...
@@ -45,4 +45,6 @@ class ReluCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
REGISTER_LITE_KERNEL
(
relu
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ReluCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/operators/conv_op.h
浏览文件 @
33437fe4
...
...
@@ -40,11 +40,11 @@ class ConvOpLite : public OpLite {
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
input
=
op_desc
.
Input
(
"Input"
).
front
();
auto
filter
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
out
=
op_desc
.
Output
(
"O
ut"
).
front
();
auto
out
put
=
op_desc
.
Output
(
"Outp
ut"
).
front
();
param_
.
x
=
scope
->
FindVar
(
input
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
filter
=
scope
->
FindVar
(
filter
)
->
GetMutable
<
lite
::
Tensor
>
();
CHECK
(
scope
->
FindVar
(
out
));
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
lite
::
Tensor
>
();
CHECK
(
scope
->
FindVar
(
out
put
));
param_
.
output
=
scope
->
FindVar
(
out
put
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
groups
=
op_desc
.
GetAttr
<
int
>
(
"groups"
);
...
...
@@ -53,19 +53,24 @@ class ConvOpLite : public OpLite {
std
::
vector
<
std
::
string
>
input_arg_names
=
op_desc
.
InputArgumentNames
();
if
(
std
::
find
(
input_arg_names
.
begin
(),
input_arg_names
.
end
(),
"Bias"
)
!=
input_arg_names
.
end
())
{
auto
bias_var
=
scope
->
FindVar
(
op_desc
.
Input
(
"Bias"
).
front
());
if
(
bias_var
!=
nullptr
)
{
param_
.
bias
=
const_cast
<
lite
::
Tensor
*>
(
&
(
bias_var
->
Get
<
lite
::
Tensor
>
()));
auto
bias_arguments
=
op_desc
.
Input
(
"Bias"
);
if
(
bias_arguments
.
size
()
>
0
)
{
auto
bias_var
=
scope
->
FindVar
(
bias_arguments
.
front
());
if
(
bias_var
!=
nullptr
)
{
param_
.
bias
=
const_cast
<
lite
::
Tensor
*>
(
&
(
bias_var
->
Get
<
lite
::
Tensor
>
()));
}
}
}
if
(
std
::
find
(
input_arg_names
.
begin
(),
input_arg_names
.
end
(),
"ResidualData"
)
!=
input_arg_names
.
end
())
{
auto
residual_data_var
=
scope
->
FindVar
(
op_desc
.
Input
(
"ResidualData"
).
front
());
if
(
residual_data_var
!=
nullptr
)
{
param_
.
residualData
=
const_cast
<
lite
::
Tensor
*>
(
&
(
residual_data_var
->
Get
<
lite
::
Tensor
>
()));
auto
res_data_arguments
=
op_desc
.
Input
(
"ResidualData"
);
if
(
res_data_arguments
.
size
()
>
0
)
{
auto
residual_data_var
=
scope
->
FindVar
(
res_data_arguments
.
front
());
if
(
residual_data_var
!=
nullptr
)
{
param_
.
residualData
=
const_cast
<
lite
::
Tensor
*>
(
&
(
residual_data_var
->
Get
<
lite
::
Tensor
>
()));
}
}
}
return
true
;
...
...
paddle/fluid/lite/operators/pool_op.h
浏览文件 @
33437fe4
...
...
@@ -53,10 +53,18 @@ class PoolOpLite : public OpLite {
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
exclusive
=
op_desc
.
GetAttr
<
bool
>
(
"exclusive"
);
param_
.
adaptive
=
op_desc
.
GetAttr
<
bool
>
(
"adaptive"
);
param_
.
ceil_mode
=
op_desc
.
GetAttr
<
bool
>
(
"ceil_mode"
);
param_
.
use_quantizer
=
op_desc
.
GetAttr
<
bool
>
(
"use_quantizer"
);
if
(
op_desc
.
HasAttr
(
"exclusive"
))
{
param_
.
exclusive
=
op_desc
.
GetAttr
<
bool
>
(
"exclusive"
);
}
if
(
op_desc
.
HasAttr
(
"adaptive"
))
{
param_
.
adaptive
=
op_desc
.
GetAttr
<
bool
>
(
"adaptive"
);
}
if
(
op_desc
.
HasAttr
(
"ceil_mode"
))
{
param_
.
ceil_mode
=
op_desc
.
GetAttr
<
bool
>
(
"ceil_mode"
);
}
if
(
op_desc
.
HasAttr
(
"use_quantizer"
))
{
param_
.
use_quantizer
=
op_desc
.
GetAttr
<
bool
>
(
"use_quantizer"
);
}
// param_.data_format = op_desc.GetAttr<bool>("data_format");
return
true
;
}
...
...
paddle/fluid/lite/operators/relu_op.cc
浏览文件 @
33437fe4
...
...
@@ -32,12 +32,11 @@ bool ReluOp::InferShape() const {
bool
ReluOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
param_
.
input
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
opdesc
.
Input
(
"
Input
"
).
front
())
->
Get
<
lite
::
Tensor
>
());
&
scope
->
FindVar
(
opdesc
.
Input
(
"
X
"
).
front
())
->
Get
<
lite
::
Tensor
>
());
param_
.
output
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
CHECK
(
param_
.
input
);
CHECK
(
param_
.
output
);
kernel_
->
SetParam
(
param_
);
return
true
;
}
...
...
paddle/fluid/lite/operators/split_op.cc
浏览文件 @
33437fe4
...
...
@@ -37,7 +37,7 @@ bool SplitOp::InferShape() const {
const
auto
&
sections
=
param_
.
sections
;
const
int
outs_number
=
outs
.
size
();
std
::
vector
<
lite
::
DDim
Hvy
>
outs_dims
;
std
::
vector
<
lite
::
DDim
>
outs_dims
;
outs_dims
.
reserve
(
outs_number
);
if
(
num
>
0
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录